
run_test is a utility which will be implemented in python and will be used as a driver for the test suite. 

run_test –d <dir> [-t|-g] [-r] [-n <num>] [-f <file>] [-w <working-
dir>] 

-d <dir>: the folder which contains test program(s). 
-g: generate result file(s) and stores it/them at the same folder as the test program(s). 
-t: runs test program(s) and compares the result(s) with expected result(s) (.res). It is the default 
behaviour. 
-r: recursively goes through <dir> and traverses all subfolders. 
-n <num>: number of times that the test(s) should run (can be used with –t only). Default is 1. 0 runs 
the test(s) in an infinite loop (suitable for regression test).  
-f <file>: runs test program <dir>/<file>. 
-w <working-dir>: working directory where temporary files are created. Default is /tmp. 

Each test program is a python program which tests one or more features of a module. The result of 
each test can be a sentence or a value or a set of values and should be written in standard output. Thus, 
running a test program may generate one or more lines of text.  Each result (line) should start with a 
unique tag which identifies the feature which has been tested. If a test fails, the tag should help the 
tester to easily find out which test has failed. For example, it can be a string which contains test 
program name, test function name and line number. The results should not contains values which 
might change in different runs. In other words, a test program should always generate the same 
result(s). 

For each test program, an expected result file should be created. This is a text file contains the output 
which is expected to be generated by the test program. It can be created by using option –g of run_test 
or by redirecting the standard output of the test program to a file. The result file should have the same 
name as the test program, but the extension is res. For example, if name of the test program is 
test_tcp.py, name of the expected result file should be test_tcp.res. 

When run_test runs with –t, it runs the test program and stores the output in a temporary file. Then it 
compares the temporary file with the expected result file for the test program, using utility diff. If 
there is not difference, the test is considered as passed otherwise the test is considered as failed and 
the output of diff is shown on the standard output or standard error so that it can be redirected to a file 
if tester would like to run the test off-line. 

Test programs should be organized in a directory structure. Top test folder may contain test programs 
and test sub-folders. Sub-folders can be used for classifying test programs, if required. Following 
figure shows an example: 

 

 

 

 

 

 

 

 

plt_test 

plt-1 plt-2 test1.py 

test2.py 

test1.res 

test2.res 

test3.py 

test4.py 

test3.res 

test4.res 

test5.py 

test6.py 

test5.res 

test6.res 



And following are some examples of how run_test can be used to run different test scenarios based on 
the above structure: 

run_test –d plt_test/plt-1    // runs test3.py and test4.py 

run_test –d plt_test/plt-2 –f test6.py   // runs test6.py 

run_test –d plt_test –r // runs all tests. It starts from plt_test and 
recursively traverses all sub-folders. 

run_test –g –d plt_test/plt-2   // re-generates test5.res and test6.res 

run_test –d plt_test/plt-2 –n 10   // runs test5.py and test6.py, 10 times. 

 


