Internet Research Task Force (IRTF) D. McGrew

Request for Comments: 8554 M. Curcio
Category: Informational S. Fluhrer
ISSN: 2070-1721 Cisco Systems

April 2019

Leighton-Micali Hash-Based Signatures
Abstract

This note describes a digital-signature system based on cryptographic
hash functions, following the seminal work in this area of Lamport,
Diffie, Winternitz, and Merkle, as adapted by Leighton and Micali in
1995. It specifies a one-time signature scheme and a general
signature scheme. These systems provide asymmetric authentication
without using large integer mathematics and can achieve a high
security level. They are suitable for compact implementations, are
relatively simple to implement, and are naturally resistant to side-
channel attacks. Unlike many other signature systems, hash-based
signatures would still be secure even if it proves feasible for an
attacker to build a quantum computer.

This document is a product of the Crypto Forum Research Group (CFRG)
in the IRTF. This has been reviewed by many researchers, both in the
research group and outside of it. The Acknowledgements section lists
many of them.

Status of This Memo

This document is not an Internet Standards Track specification; it is
published for informational purposes.

This document is a product of the Internet Research Task Force
(IRTF). The IRTF publishes the results of Internet-related research
and development activities. These results might not be suitable for
deployment. This RFC represents the consensus of the Crypto Forum
Research Group of the Internet Research Task Force (IRTF). Documents
approved for publication by the IRSG are not candidates for any level
of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8554.

McGrew, et al. Informational [Page 1]



RFC 8554 LMS Hash-Based Signatures April 2019

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.

Table of Contents

1. Introduction 3
1.1. CFRG Note on Post Quantum Cryptography 5
1.2. Intellectual Property 6

1.2.1. Disclaimer 6
1.3. Conventions Used in ThlS Document 6

2. Interface 6

3. Notation 7
3.1 Data Types 7

3.1.1. Operators 7
3.1.2. Functions . 8
3.1.3. Strings of w-Bit Elements 8
3.2 Typecodes . 9
3.3 Notation and Formats 9

4, LM-OTS One-Time Signatures 12
4.1 Parameters 13
4.2 Private Key 14
4.3 Public Key 15
4.4 Checksum . .. 15
4.5 Signature Generatlon 16
4.6. Signature Verification 17

5. Leighton-Micali Signatures 19
5.1 Parameters 19
5.2. 1MS Private Key 20
5.3. LMS Public Key 21
5.4. LMS Signature . 22

5.4.1. LMS Signature Generatlon 23
5.4.2. 1MS Signature Verification 24

6. Hierarchical Signatures 26
6.1. Key Generation . 29
6.2. Signature Generation 30
6.3. Signature Verification 32
6.4. Parameter Set Recommendatlons 32

7. Rationale 34
7.1. Security Strlng 35

McGrew, et al. Informational [Page 2]



RFC 8554 LMS Hash-Based Signatures April 2019

8. IANA Considerations . . . . . . . . . « . « « « « « < < . . . 36
9. Security Considerations . . . . . . . .+ ¢ < « « <« < « <« < . . 38
9 Hash Formats . . . e e e e e e e e e e e e 39
9.2. Stateful Signature Algorlthm 0]
9.3. Security of LM-OTS Checksum . . . . . . . . . . . . . . . 41
10. Comparison with Other Work . . . . . . . . . . . . . . . . . 42
11. References . . e e e e e e e e e e e e e e e e e e e 48
11.1. Normative References X
11.2. Informative References . . . e e e e e e e .. 43
Appendix A. Pseudorandom Key Generatlon e e e e e e e o . . . . 45
Appendix B. LM-OTS Parameter Options . . . 45
Appendix C. An Iterative Algorlthm for Computlng an LMS Publlc
Key . . ... 4T
Appendix D. Method for Der1v1ng Authentlcatlon Path for a
Signature . . e e e e e e e e e e e e . .. 48
Appendix E. Example Implementatlon e e e e e e e e e e e e e e B
Appendix F. Test Cases . . . . .« ¢ v v v v e v « « v v e v < . . 4o
Acknowledgements . . . . . . . . . ¢ v 4 e e e e 4w e e e e« o . 60
Authors’ Addresses . . . . . . . ¢ ¢ ¢ e v v e v e e e e e e o o.o6l
1. Introduction

One-time signature systems, and general-purpose signature systems
built out of one-time signature systems, have been known since 1979
[Merkle79], were well studied in the 1990s [USPT05432852], and have
benefited from renewed attention in the last decade. The
characteristics of these signature systems are small private and
public keys and fast signature generation and verification, but large
signatures and moderately slow key generation (in comparison with RSA
and ECDSA (Elliptic Curve Digital Signature Algorithm)). Private
keys can be made very small by appropriate key generation, for
example, as described in Appendix A. In recent years, there has been
interest in these systems because of their post—-quantum security and
their suitability for compact verifier implementations.

This note describes the Leighton and Micali adaptation [USPT05432852]
of the original Lamport-Diffie-Winternitz-Merkle one-time signature
system [Merkle79] [C:Merkle87] [C:Merkle89a] [C:Merkle89b] and
general signature system [Merkle79] with enough specificity to ensure
interoperability between implementations.

A signature system provides asymmetric message authentication. The
key—generation algorithm produces a public/private key pair. A
message 1s signed by a private key, producing a signature, and a
message/signature pair can be verified by a public key. A One-Time
Signature (OTS) system can be used to sign one message securely but
will become insecure if more than one is signed with the same public/

McGrew, et al. Informational [Page 3]



RFC 8554 LMS Hash-Based Signatures April 2019

private key pair. An N-time signature system can be used to sign N
or fewer messages securely. A Merkle-tree signature scheme is an
N-time signature system that uses an OTS system as a component.

In the Merkle scheme, a binary tree of height h is used to hold 2”h
OTS key pairs. Each interior node of the tree holds a value that is
the hash of the values of its two child nodes. The public key of the
tree is the value of the root node (a recursive hash of the OTS
public keys), while the private key of the tree is the collection of
all the OTS private keys, together with the index of the next OTS
private key to sign the next message with.

In this note, we describe the Leighton-Micali Signature (LMS) system
(a variant of the Merkle scheme) with the Hierarchical Signature
System (HSS) built on top of it that allows it to efficiently scale

to larger numbers of signatures. In order to support signing a large
number of messages on resource-constrained systems, the Merkle tree
can be subdivided into a number of smaller trees. Only the

bottommost tree is used to sign messages, while trees above that are
used to sign the public keys of their children. For example, in the
simplest case with two levels with both levels consisting of height h
trees, the root tree is used to sign 2”h trees with 27h OTS key
pairs, and each second-level tree has 2”h OTS key pairs, for a total
of 27 (2h) bottom-level key pairs, and so can sign 27 (2h) messages.
The advantage of this scheme is that only the active trees need to be
instantiated, which saves both time (for key generation) and space
(for key storage). On the other hand, using a multilevel signature
scheme increases the size of the signature as well as the signature
verification time.

This note is structured as follows. Notes on post—quantum
cryptography are discussed in Section 1.1. 1Intellectual property
issues are discussed in Section 1.2. The notation used within this
note is defined in Section 3, and the public formats are described in
Section 3.3. The Leighton-Micali One-Time Signature (LM-OTS) system
is described in Section 4, and the LMS and HSS N-time signature
systems are described in Sections 5 and 6, respectively. Sufficient
detail is provided to ensure interoperability. The rationale for the
design decisions is given in Section 7. The IANA registry for these
signature systems is described in Section 8. Security considerations
are presented in Section 9. Comparison with another hash-based
signature algorithm (eXtended Merkle Signature Scheme (XMSS)) is in
Section 10.

This document represents the rough consensus of the CFRG.

McGrew, et al. Informational [Page 4]



RFC 8554 LMS Hash-Based Signatures April 2019

1.1. CFRG Note on Post-Quantum Cryptography

All post—quantum algorithms documented by the Crypto Forum Research
Group (CFRG) are today considered ready for experimentation and
further engineering development (e.g., to establish the impact of

performance and sizes on IETF protocols). However, at the time of
writing, we do not have significant deployment experience with such
algorithms.

Many of these algorithms come with specific restrictions, e.g.,
change of classical interface or less cryptanalysis of proposed
parameters than established schemes. The CFRG has consensus that all
documents describing post—-quantum technologies include the above
paragraph and a clear additional warning about any specific
restrictions, especially as those might affect use or deployment of
the specific scheme. That guidance may be changed over time via
document updates.

Additionally, for LMS:

CFRG consensus is that we are confident in the cryptographic security
of the signature schemes described in this document against quantum
computers, given the current state of the research community’s
knowledge about quantum algorithms. Indeed, we are confident that
the security of a significant part of the Internet could be made
dependent on the signature schemes defined in this document, if
developers take care of the following.

In contrast to traditional signature schemes, the signature schemes
described in this document are stateful, meaning the secret key
changes over time. If a secret key state is used twice, no
cryptographic security guarantees remain. In consequence, it becomes
feasible to forge a signature on a new message. This is a new
property that most developers will not be familiar with and requires
careful handling of secret keys. Developers should not use the
schemes described here except in systems that prevent the reuse of
secret key states.

Note that the fact that the schemes described in this document are
stateful also implies that classical APIs for digital signatures
cannot be used without modification. The API MUST be able to handle
a dynamic secret key state; that is, the API MUST allow the
signature—-generation algorithm to update the secret key state.

McGrew, et al. Informational [Page 5]



RFC 8554 LMS Hash-Based Signatures April 2019

1.2. Intellectual Property

This document is based on U.S. Patent 5,432,852, which was issued
over twenty years ago and is thus expired.

1.2.1. Disclaimer

This document is not intended as legal advice. Readers are advised
to consult with their own legal advisers if they would like a legal
interpretation of their rights.

The IETF policies and processes regarding intellectual property and
patents are outlined in [RFC8179] and at
<https://datatracker.ietf.org/ipr/about>.

1.3. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

2. Interface

The LMS signing algorithm is stateful; it modifies and updates the
private key as a side effect of generating a signature. Once a
particular value of the private key is used to sign one message, it
MUST NOT be used to sign another.

The key—-generation algorithm takes as input an indication of the
parameters for the signature system. If it is successful, it returns
both a private key and a public key. Otherwise, it returns an
indication of failure.

The signing algorithm takes as input the message to be signed and the
current value of the private key. If successful, it returns a
signature and the next value of the private key, if there is such a
value. After the private key of an N-time signature system has
signed N messages, the signing algorithm returns the signature and an
indication that there is no next value of the private key that can be
used for signing. If unsuccessful, it returns an indication of
failure.

The verification algorithm takes as input the public key, a message,

and a signature; it returns an indication of whether or not the
signature—-and-message pair is valid.

McGrew, et al. Informational [Page 6]



RFC 8554 LMS Hash-Based Signatures April 2019

3.

3.

3.

A message/signature pair is valid if the signature was returned by
the signing algorithm upon input of the message and the private key
corresponding to the public key; otherwise, the signature and message
pair is not valid with probability very close to one.

Notation
1. Data Types

Bytes and byte strings are the fundamental data types. A single byte
is denoted as a pair of hexadecimal digits with a leading "Ox". A
byte string is an ordered sequence of zero or more bytes and is
denoted as an ordered sequence of hexadecimal characters with a
leading "0x". For example, 0xe534f0 is a byte string with a length
of three. An array of byte strings is an ordered set, indexed
starting at zero, in which all strings have the same length.

Unsigned integers are converted into byte strings by representing
them in network byte order. To make the number of bytes in the
representation explicit, we define the functions u8str (X), ulé6str(X),
and u32str(X), which take a nonnegative integer X as input and return
one—, two—, and four-byte strings, respectively. We also make use of
the function strTou32(S), which takes a four-byte string S as input
and returns a nonnegative integer; the identity u32str(strTou32(S)) =
S holds for any four-byte string S.

1.1. Operators

When a and b are real numbers, mathematical operators are defined as
follows:

~ : a ® b denotes the result of a raised to the power of b

* : a * b denotes the product of a multiplied by b

/ : a / b denotes the quotient of a divided by b

% : a % b denotes the remainder of the integer division of a by b
(with a and b being restricted to integers in this case)

+ a + b denotes the sum of a and b

— : a — b denotes the difference of a and b

AND : a AND b denotes the bitwise AND of the two nonnegative
integers a and b (represented in binary notation)

McGrew, et al. Informational [Page 7]



RFC 8554 LMS Hash-Based Signatures April 2019
The standard order of operations is used when evaluating arithmetic
expressions.

When B is a byte and i is an integer, then B >> i denotes the logical
right-shift operation by i bit positions. Similarly, B << i denotes
the logical left-shift operation.

If S and T are byte strings, then S || T denotes the concatenation of
S and T. If S and T are equal-length byte strings, then S AND T
denotes the bitwise logical and operation.

The i-th element in an array A is denoted as A[i].

3.1.2. Functions

If r is a nonnegative real number, then we define the following

functions:
ceil(r) : returns the smallest integer greater than or equal to r
floor(r) : returns the largest integer less than or equal to r
lg(r) : returns the base-2 logarithm of r

3.1.3. Strings of w-Bit Elements

If S is a byte string, then byte(S, i) denotes its i-th byte, where
the index starts at 0 at the left. Hence, byte(S, 0) is the leftmost
byte of S, byte(S, 1) is the second byte from the left, and (assuming
S is n bytes long) byte(S, n-1) is the rightmost byte of S. 1In
addition, bytes (S, i, Jj) denotes the range of bytes from the i-th to
the j—-th byte, inclusive. For example, if S = 0x02040608, then

byte (S, 0) is 0x02 and bytes(S, 1, 2) is 0x0406.

A byte string can be considered to be a string of w-bit unsigned
integers; the correspondence is defined by the function coef (S, i, w)
as follows:

If S is a string, i is a positive integer, and w is a member of the
set {1, 2, 4, 8 }, then coef (S, i, w) is the i-th, w-bit value, if S
is interpreted as a sequence of w-bit wvalues. That is,

coef (S, i, w) = (2"w — 1) AND

( byte(S, floor(i * w / 8)) >>
(8 — (w* (1 % (8 / w)) + w)) )

McGrew, et al. Informational [Page 8]



RFC 8554 LMS Hash-Based Signatures April 2019

For example, if S is the string 0x1234, then coef(S, 7, 1) is 0 and
coef (S, 0, 4) is 1.

S (represented as bits)
ettt ——F——F——F——F——F——+
| ol ol of 1] of of 1] of of of 1 1] of 1] of of
= ——+——+——+

A

coef (s, 7, 1)

S (represented as four-bit wvalues)

The return value of coef is an unsigned integer. If i is larger than
the number of w-bit values in S, then coef (S, i, w) is undefined, and
an attempt to compute that value MUST raise an error.

3.2. Typecodes

A typecode is an unsigned integer that is associated with a
particular data format. The format of the LM-0OTS, 1LMS, and HSS
signatures and public keys all begin with a typecode that indicates
the precise details used in that format. These typecodes are
represented as four-byte unsigned integers in network byte order;
equivalently, they are External Data Representation (XDR)
enumerations (see Section 3.3).

3.3. Notation and Formats

The signature and public key formats are formally defined in XDR to
provide an unambiguous, machine-readable definition [RFC4506]. The
private key format is not included as it is not needed for
interoperability and an implementation MAY use any private key
format. However, for clarity, we include an example of private key
data in Test Case 2 of Appendix F. Though XDR is used, these formats

McGrew, et al. Informational [Page 9]



RFC 8554 LMS Hash-Based Signatures April 2019

are simple and easy to parse without any special tools. An
illustration of the layout of data in these objects is provided
below. The definitions are as follows:

/* one—-time signatures */

enum lmots_algorithm_ type {
lmots_reserved =
lmots_sha256_n32_wl =
1lmots_sha256_n32_w2
lmots_sha256_n32_w4 =
lmots_sha256_n32_w8 =
}i

14

r

4

4

Il
s w N e o

typedef opaque bytestring32[32];

struct lmots_signature_n32_p265 ({
bytestring32 C;
bytestring32 y[265];

}i

struct lmots_signature_n32_pl33 ({
bytestring32 C;
bytestring32 y[133];

}i

struct lmots_signature_n32_p67 {
bytestring32 C;
bytestring32 y[671];

}i

struct lmots_signature_n32_p34 {
bytestring32 C;
bytestring32 yI[341];

}i

union lmots_signature switch (lmots_algorithm_ type type) {
case lmots_sha256_n32_wl:
Imots_signature_n32_p265 sig_n32_p265;
case lmots_sha256_n32_w2:
lmots_signature_n32_pl33 sig_n32_pl33;
case lmots_sha256_n32_wi4:
lmots_signature_n32_p67 sig_n32_p67;
case lmots_sha256_n32_w8:
Ilmots_signature_n32_p34 sig_n32_p34;
default:
void; /* error condition */

}i

McGrew, et al. Informational [Page 10]



RFC 8554 LMS Hash-Based Signatures April 2019

/* hash-based signatures (hbs) */
enum 1lms_algorithm type {

lms_reserved =

Ims_sha256_n32_h5

1lms_sha256_n32_hl0 =

Ims_sha256_n32_hl5

1lms_sha256_n32_h20

1lms_sha256_n32_h25 =
}i

I
~ N~

~

I
0w Jo U o

~

/* leighton-micali signatures (lms) */

union lms_path switch (lms_algorithm type type) {
case lms_sha256_n32_hb5:
bytestring32 path_n32_h5[5];
case lms_sha256_n32_hl0:
bytestring32 path_n32_hl0[10];
case lms_sha256_n32_hl5:
bytestring32 path_n32_hl15[15];
case lms_sha256_n32_h20:
bytestring32 path_n32_h20[20];
case lms_sha256_n32_h25:
bytestring32 path_n32_h25[25];
default:
void; /* error condition */

}i

struct lms_signature {
unsigned int g;
Ilmots_signature lmots_sig;
lms_path nodes;

}i

struct lms_key_n32 {
lmots_algorithm_type ots_alg_type;
opaque I[16];
opaque K[32];

}i

union lms_public_key switch (lms_algorithm_type type) {
case lms_sha256_n32_hb5:
case lms_sha256_n32_hl0:
case lms_sha256_n32_hl5:
case lms_sha256_n32_h20:
case lms_sha256_n32_h25:
lms_key_n32 z_n32;

McGrew, et al. Informational [Page 11]



RFC 8554 LMS Hash-Based Signatures April 2019

default:
void; /* error condition */

}i
/* hierarchical signature system (hss) */

struct hss_public_key {
unsigned int L;
Ilms_public_key pub;
}i

struct signed_public_key {
lms_signature sig;
lms_public_key pub;

}i

struct hss_signature ({
signed_public_key signed_keys<7>;
lms_signature sig_of_message;

}i

4, LM-OTS One-Time Signatures

This section defines LM-OTS signatures. The signature is used to
validate the authenticity of a message by associating a secret
private key with a shared public key. These are one-time signatures;
each private key MUST be used at most one time to sign any given
message.

As part of the signing process, a digest of the original message is
computed using the cryptographic hash function H (see Section 4.1),
and the resulting digest is signed.

In order to facilitate its use in an N-time signature system, the
ILM-0OTS key generation, signing, and verification algorithms all take
as input parameters I and g. The parameter I is a 1l6-byte string
that indicates which Merkle tree this LM-OTS is used with. The
parameter g is a 32-bit integer that indicates the leaf of the Merkle
tree where the OTS public key appears. These parameters are used as
part of the security string, as listed in Section 7.1. When the
LM-OTS signature system is used outside of an N-time signature
system, the value I MAY be used to differentiate this one-time
signature from others; however, the value g MUST be set to the all-
zero value.

McGrew, et al. Informational [Page 12]



RFC 8554 LMS Hash-Based Signatures April 2019

4.1. Parameters

The signature system uses the parameters n and w, which are both
positive integers. The algorithm description also makes use of the
internal parameters p and ls, which are dependent on n and w. These
parameters are summarized as follows:

n : the number of bytes of the output of the hash function.

w : the width (in bits) of the Winternitz coefficients; that is,
the number of bits from the hash or checksum that is used with a
single Winternitz chain. It is a member of the set

{1, 2, 4, 8 }.

p : the number of n-byte string elements that make up the LM-0TS
signature. This is a function of n and w; the values for the
defined parameter sets are listed in Table 1; it can also be
computed by the algorithm given in Appendix B.

ls : the number of left-shift bits used in the checksum function
Cksm (defined in Section 4.4).

H : a second-preimage-resistant cryptographic hash function that
accepts byte strings of any length and returns an n-byte string.

For more background on the cryptographic security requirements for H,
see Section 9.

The value of n is determined by the hash function selected for use as
part of the LM-0OTS algorithm; the choice of this value has a strong
effect on the security of the system. The parameter w determines the
length of the Winternitz chains computed as a part of the OTS
signature (which involve 2”w - 1 invocations of the hash function);
it has little effect on security. Increasing w will shorten the
signature, but at a cost of a larger computation to generate and
verify a signature. The values of p and ls are dependent on the
choices of the parameters n and w, as described in Appendix B.

Table 1 illustrates various combinations of n, w, p and ls, along
with the resulting signature length.

The value of w describes a space/time trade-off; increasing the value
of w will cause the signature to shrink (by decreasing the value of
p) while increasing the amount of time needed to perform operations
with it: generate the public key and generate and verify the
signature. In general, the LM-OTS signature is 4+n* (pt+l) bytes long,
and public key generation will take p*(2”"w - 1) + 1 hash computations
(and signature generation and verification will take approximately
half that on average).

McGrew, et al. Informational [Page 13]



RFC 8554 LMS Hash-Based Signatures April 2019

e o e et S e R +
Parameter Set Name | H | n | w|p | 1s | sig_len |

o o s B s B +
LMOTS_SHA256_N32_W1 SHA256 32 1 265 7 8516
LMOTS_SHA256_N32_W2 SHA256 32 2 133 6 4292
LMOTS_SHA256_N32_W4 SHA256 32 4 67 4 2180
LMOTS_SHA256_N32_W8 SHA256 32 8 34 0 1124

o oo s B et B +

Table 1

Here SHA256 denotes the SHA-256 hash function defined in NIST
standard [FIPS180].

4.2. Private Key

The format of the LM-OTS private key is an internal matter to the
implementation, and this document does not attempt to define it. One
possibility is that the private key may consist of a typecode
indicating the particular LM-OTS algorithm, an array x[] containing p
n-byte strings, and the 16-byte string I and the 4-byte string qg.
This private key MUST be used to sign (at most) one message. The
following algorithm shows pseudocode for generating a private key.

Algorithm 0: Generating a Private Key

1. Retrieve the values of g and I (the 16-byte identifier of the
LMS public/private key pair) from the LMS tree that this LM-OTS
private key will be used with

2. Set type to the typecode of the algorithm

3. Set n and p according to the typecode and Table 1

4. Compute the array x as follows:
for (1 =0; i <p; 1 =1+ 1) {

set x[i] to a uniformly random n-byte string

}

5. Return u32str(type) || I || u32str(q) || x101 || x[11 ||
x[p-1]
An implementation MAY use a pseudorandom method to compute x[i], as

suggested in [Merkle79], page 46. The details of the pseudorandom
method do not affect interoperability, but the cryptographic strength

McGrew, et al. Informational [Page 14]



RFC 8554 LMS Hash-Based Signatures April 2019

MUST match that of the LM-OTS algorithm. Appendix A provides an
example of a pseudorandom method for computing the LM-O0TS private
key.

4.3. Public Key
The LM-OTS public key is generated from the private key by
iteratively applying the function H to each individual element of x,

for 2”w - 1 iterations, then hashing all of the resulting values.

The public key is generated from the private key using the following
algorithm, or any equivalent process.

Algorithm 1: Generating a One-Time Signature Public Key From a
Private Key

1. Set type to the typecode of the algorithm

2. Set the integers n, p, and w according to the typecode and
Table 1

3. Determine x, I, and g from the private key

4. Compute the string K as follows:

for (1 =0; i <p; i=1+1) {
tmp = x[i]
for (3 =0; 3 <2 - 1; 3 =9+ 1) {
tmp = H(I || u32str(q) || uléstr(i) || u8str(j) || tmp)
}
y[i] = tmp
}
K = H(I || u32str(qg) || uléstr(p_PBLC) || y(01 || ... || yIp-11)
5. Return u32str(type) || I || u32str(q) || K

where D_PBLC is the fixed two-byte value 0x8080, which is used to
distinguish the last hash from every other hash in this system.

The public key is the wvalue returned by Algorithm 1.
4.4. Checksum

A checksum is used to ensure that any forgery attempt that
manipulates the elements of an existing signature will be detected.
This checksum is needed because an attacker can freely advance any of
the Winternitz chains. That is, if this checksum were not present,
then an attacker who could find a hash that has every digit larger
than the valid hash could replace it (and adjust the Winternitz

McGrew, et al. Informational [Page 15]



RFC 8554 LMS Hash-Based Signatures April 2019

chains). The security property that the checksum provides is
detailed in Section 9. The checksum function Cksm is defined as
follows, where S denotes the n-byte string that is input to that
function, and the value sum is a 16-bit unsigned integer:

Algorithm 2: Checksum Calculation

sum = 0
for (1 =0; i < (n*8/w); i =1 + 1) {
sum = sum + (2w — 1) - coef (S, i, w)

}

return (sum << 1ls)

ls is the parameter that shifts the significant bits of the checksum
into the positions that will actually be used by the coef function
when encoding the digits of the checksum. The actual 1ls parameter is
a function of the n and w parameters; the values for the currently
defined parameter sets are shown in Table 1. It is calculated by the
algorithm given in Appendix B.

Because of the left-shift operation, the rightmost bits of the result
of Cksm will often be zeros. Due to the value of p, these bits will
not be used during signature generation or verification.

4.5. Signature Generation

The LM-OTS signature of a message is generated by doing the following
in sequence: prepending the LMS key identifier I, the LMS leaf
identifier g, the value D_MESG (0x8181), and the randomizer C to the
message; computing the hash; concatenating the checksum of the hash
to the hash itself; considering the resulting value as a sequence of
w-bit values; and using each of the w-bit values to determine the
number of times to apply the function H to the corresponding element
of the private key. The outputs of the function H are concatenated
together and returned as the signature. The pseudocode for this
procedure is shown below.

Algorithm 3: Generating a One-Time Signature From a Private Key and a
Message

1. Set type to the typecode of the algorithm
2. Set n, p, and w according to the typecode and Table 1
3. Determine x, I, and g from the private key

4. Set C to a uniformly random n-byte string

McGrew, et al. Informational [Page 16]



RFC 8554 LMS Hash-Based Signatures April 2019

5. Compute the array y as follows:

Q = H(I || u32str(q) || uléstr(D_MESG) || C || message)

for (1 =0; i <p; i =41+ 1) {
a = coef(Q || Cksm(Q), i, w)
tmp = x[i]
for (3 =0; J<a; jJ=3+1){

tmp = H(I || u32str(q) || uléstr(i) || u8str(j) || tmp)

}
y[i]l = tmp

}

6. Return u32str(type) || ¢ || vIio1 || ... || vIp-1]

Note that this algorithm results in a signature whose elements are
intermediate values of the elements computed by the public key
algorithm in Section 4.3.

The signature is the string returned by Algorithm 3. Section 3.3
formally defines the structure of the string as the lmots_signature
union.

4.6. Signature Verification

In order to verify a message with its signature (an array of n-byte
strings, denoted as y), the receiver must "complete" the chain of
iterations of H using the w-bit coefficients of the string resulting
from the concatenation of the message hash and its checksum. This
computation should result in a value that matches the provided public
key.

Algorithm 4a: Verifying a Signature and Message Using a Public Key

1. If the public key is not at least four bytes long,
return INVALID.

2. Parse pubtype, I, g, and K from the public key as follows:
a. pubtype = strTou32 (first 4 bytes of public key)

b. Set n according to the pubkey and Table 1; if the public key
is not exactly 24 + n bytes long, return INVALID.

c. I

next 16 bytes of public key

d. g strTou32 (next 4 bytes of public key)

e. K = next n bytes of public key

McGrew, et al. Informational [Page 17]



RFC 8554 LMS Hash-Based Signatures April 2019

3. Compute the public key candidate Kc from the signature,
message, pubtype, and the identifiers I and g obtained from the
public key, using Algorithm 4b. If Algorithm 4b returns
INVALID, then return INVALID.

4. If Kc is equal to K, return VALID; otherwise, return INVALID.

Algorithm 4b: Computing a Public Key Candidate Kc from a Signature,
Message, Signature Typecode pubtype, and Identifiers I, g

1. If the signature is not at least four bytes long,
return INVALID.

2. Parse sigtype, C, and y from the signature as follows:
a. sigtype = strTou32(first 4 bytes of signature)

b. If sigtype is not equal to pubtype, return INVALID.

c. Set n and p according to the pubtype and Table 1; if the
signature is not exactly 4 + n * (p+l) bytes long,
return INVALID.

d. C = next n bytes of signature

e. yv[0] = next n bytes of signature
next n bytes of signature

=
il
I

yp-11 next n bytes of signature

3. Compute the string Kc as follows:

Q = H(I || u32str(q) || uléstr(D_MESG) || C || message)
for (1 =20; i <p; i =41+ 1) {
a = coef(Q || Cksm(Q), i, w)
tmp = y[i]
for ( J=a; J<2w-1; 3 =73+ 1) {
tmp = H(I || u32str(q) || ul6str (i) || u8str(j) || tmp)
}
z[1] = tmp
}
Kc = H(I || u32str(g) || uléstr(D_PBLC) ||
z[01 || z111 || ... || zIp-11)

4. Return Kc.

McGrew, et al. Informational [Page 18]



RFC 8554 LMS Hash-Based Signatures April 2019

5.

5.

Leighton-Micali Signatures

The Leighton-Micali Signature (LMS) method can sign a potentially
large but fixed number of messages. An LMS system uses two
cryptographic components: a one-time signature method and a hash
function. Each LMS public/private key pair is associated with a
perfect binary tree, each node of which contains an m-byte value,
where m is the output length of the hash function. Each leaf of the
tree contains the value of the public key of an LM-OTS public/private
key pair. The value contained by the root of the tree is the LMS
public key. Each interior node is computed by applying the hash
function to the concatenation of the values of its children nodes.

Each node of the tree is associated with a node number, an unsigned
integer that is denoted as node_num in the algorithms below, which is
computed as follows. The root node has node number 1; for each node
with node number N < 2"h (where h is the height of the tree), its
left child has node number 2*N, while its right child has node number
2*N + 1. The result of this is that each node within the tree will
have a unique node number, and the leaves will have node numbers 2"h,
(2”h)+1, (2*h)+2, ..., (2”h)+(2”h)-1. In general, the j-th node at
level i has node number 27i + j. The node number can conveniently be
computed when it is needed in the LMS algorithms, as described in
those algorithms.

1. Parameters
An IMS system has the following parameters:
h : the height of the tree
m : the number of bytes associated with each node

H : a second-preimage-resistant cryptographic hash function that
accepts byte strings of any length and returns an m-byte string.

There are 2”h leaves in the tree.

The overall strength of LMS signatures is governed by the weaker of
the hash function used within the LM-OTS and the hash function used
within the LMS system. In order to minimize the risk, these two hash
functions SHOULD be the same (so that an attacker could not take
advantage of the weaker hash function choice).

McGrew, et al. Informational [Page 19]



RFC 8554 LMS Hash-Based Signatures April 2019

5

.2.

LMS_SHA256_M32_H5 SHA256 32 5
LMS_SHA256_M32_H10 SHA256 32 10
ILMS_SHA256_M32_H15 SHA256 32 15

LMS_SHA256_M32_H20 SHA256 32 20

LMS_SHA256_M32_H25 SHA256 32 25
e Tt Fom Fo—m——b————t

Table 2
LMS Private Key

The format of the LMS private key is an internal matter to the
implementation, and this document does not attempt to define it. One
possibility is that it may consist of an array OTS_PRIV[] of 2”h
LM-0OTS private keys and the leaf number g of the next LM-OTS private
key that has not yet been used. The g-th element of OTS_PRIVI[] is
generated using Algorithm 0 with the identifiers I, g. The leaf
number g is initialized to zero when the LMS private key is created.
The process is as follows:

Algorithm 5: Computing an LMS Private Key.
1. Determine h and m from the typecode and Table 2.
2. Set I to a uniformly random 16-byte string.

3. Compute the array OTS_PRIV[] as follows:
for (g=0; g< 2*h; g=qg + 1) {
OTS_PRIV[g] = LM-OTS private key with identifiers I, g

An IMS private key MAY be generated pseudorandomly from a secret
value; in this case, the secret value MUST be at least m bytes long
and uniformly random and MUST NOT be used for any other purpose than
the generation of the LMS private key. The details of how this
process is done do not affect interoperability; that is, the public
key verification operation is independent of these details.

Appendix A provides an example of a pseudorandom method for computing
an LMS private key.

McGrew, et al. Informational [Page 20]



RFC 8554 LMS Hash-Based Signatures April 2019

The signature-generation logic uses g as the next leaf to use; hence,
step 4 starts it off at the leftmost leaf. Because the signature
process increments g after the signature operation, the first
signature will have g=0.

5.3. 1MS Public Key
An LMS public key is defined as follows, where we denote the public

key final hash value (namely, the K wvalue computed in Algorithm 1)
associated with the i-th LM-OTS private key as OTS_PUB_HASH[i], with

i ranging from 0 to (2”h)-1. Each instance of an LMS public/private
key pair is associated with a balanced binary tree, and the nodes of
that tree are indexed from 1 to 2 (h+l)-1. Each node is associated

with an m-byte string. The string for the r-th node is denoted as
T[r] and defined as

if r >= 2%h:
H(I||u32str(r)||uléstr (D_LEAF) ||OTS_PUB_HASH[r-2"h])
else
H(I||u32str(r)||uléstr(D_INTR) | |T[2*r]||T[2*r+1])

where D_LEAF is the fixed two-byte value 0x8282 and D_INTR is the
fixed two-byte value 0x8383, both of which are used to distinguish
this hash from every other hash in this system.

When we have r >= 2”h, then we are processing a leaf node (and thus
hashing only a single LM-OTS public key). When we have r < 2”h, then
we are processing an internal node -- that is, a node with two child
nodes that we need to combine.

The LMS public key can be represented as the byte string
u32str (type) || u32str(otstype) || I || TI1]

Section 3.3 specifies the format of the type variable. The value
otstype is the parameter set for the LM-OTS public/private key pairs
used. The value I is the private key identifier and is the value
used for all computations for the same LMS tree. The value T[l] can
be computed via recursive application of the above equation or by any
equivalent method. An iterative procedure is outlined in Appendix C.

McGrew, et al. Informational [Page 21]



RFC 8554 LMS Hash-Based Signatures April 2019

5.4. 1MS Signature
An LMS signature consists of

the number g of the leaf associated with the LM-OTS signature, as
a four-byte unsigned integer in network byte order, an LM-OTS
signature,

a typecode indicating the particular LMS algorithm,

an array of h m-byte values that is associated with the path
through the tree from the leaf associated with the LM-0OTS
signature to the root.

Symbolically, the signature can be represented as

u32str(q) || lmots_signature || u32str(type) ||
path[0] || path[1] || path({2] || ... || path[h-1]

Section 3.3 formally defines the format of the signature as the
Ilms_signature structure. The array for a tree with height h will
have h values and contains the values of the siblings of (that is, is
adjacent to) the nodes on the path from the leaf to the root, where
the sibling to node A is the other node that shares node A’s parent.
In the signature, 0 is counted from the bottom level of the tree, and
so path[0] is the value of the node adjacent to leaf node g; path[1]
is the second-level node that is adjacent to leaf node g’s parent,
and so on up the tree until we get to path[h-1], which is the value
of the next-to-the-top-level node whose branch the leaf node g does
not reside in.

Below is a simple example of the authentication path for h=3 and g=2.
The leaf marked OTS is the one-time signature that is used to sign
the actual message. The nodes on the path from the OTS public key to
the root are marked with a *, while the nodes that are used within
the path array are marked with **. The values in the path array are
those nodes that are siblings of the nodes on the path; path[0] is
the leaf** node that is adjacent to the OTS public key (which is the
start of the path); path[l] is the T[4]** node that is the sibling of
the second node T[5]* on the path, and path[2] is the T[3]** node
that is the sibling of the third node T[2]* on the path.

McGrew, et al. Informational [Page 22]



RFC 8554 LMS Hash-Based Signatures April 2019

leaf leaf OTS leaf** leaf leaf leaf leaf

The idea behind this authentication path is that it allows us to
validate the OTS hash with using h path array values and hash
computations. What the verifier does is recompute the hashes up the
path; first, it hashes the given OTS and path[0] wvalue, giving a

tentative T[5]’ wvalue. Then, it hashes its path[l] and tentative
T[5]’ value to get a tentative T[2]’ value. Then, it hashes that and
the path[2] value to get a tentative Root’ wvalue. TIf that value is

the known public key of the Merkle tree, then we can assume that the
value T[2]’ it got was the correct T[2] value in the original tree,
and so the T[5]’ wvalue it got was the correct T[5] value in the
original tree, and so the OTS public key is the same as in the
original and, hence, is correct.

.4.1. 1LMS Signature Generation

To compute the LMS signature of a message with an LMS private key,
the signer first computes the LM-OTS signature of the message using
the leaf number of the next unused LM-OTS private key. The leaf
number g in the signature is set to the leaf number of the LMS
private key that was used in the signature. Before releasing the
signature, the leaf number g in the LMS private key MUST be
incremented to prevent the LM-OTS private key from being used again.
If the LMS private key is maintained in nonvolatile memory, then the
implementation MUST ensure that the incremented value has been stored
before releasing the signature. The issue this tries to prevent is a
scenario where a) we generate a signature using one LM-OTS private
key and release it to the application, b) before we update the
nonvolatile memory, we crash, and c) we reboot and generate a second
signature using the same LM-OTS private key. With two different
signatures using the same LM-OTS private key, an attacker could
potentially generate a forged signature of a third message.

McGrew, et al. Informational [Page 23]



RFC 8554 LMS Hash-Based Signatures April 2019

The array of node values in the signature MAY be computed in any way.
There are many potential time/storage trade-offs that can be applied.
The fastest alternative is to store all of the nodes of the tree and
set the array in the signature by copying them; pseudocode to do so
appears in Appendix D. The least storage-intensive alternative is to
recompute all of the nodes for each signature. Note that the details
of this procedure are not important for interoperability; it is not
necessary to know any of these details in order to perform the
signature-verification operation. The internal nodes of the tree
need not be kept secret, and thus a node-caching scheme that stores
only internal nodes can sidestep the need for strong protections.

Several useful time/storage trade-offs are described in the "Small-
Memory LM Schemes" section of [USPT05432852].

5.4.2. 1MS Signature Verification
An LMS signature is verified by first using the LM-OTS signature
verification algorithm (Algorithm 4b) to compute the LM-0OTS public
key from the LM-OTS signature and the message. The value of that
public key is then assigned to the associated leaf of the 1LMS tree,
and then the root of the tree is computed from the leaf value and the
array path[] as described in Algorithm 6 below. If the root value
matches the public key, then the signature is valid; otherwise, the
signature verification fails.

Algorithm 6: LMS Signature Verification

1. If the public key is not at least eight bytes long, return
INVALID.

2. Parse pubtype, I, and T[1l] from the public key as follows:
a. pubtype = strTou32(first 4 bytes of public key)
b. ots_typecode = strTou32 (next 4 bytes of public key)
c. Set m according to pubtype, based on Table 2.

d. If the public key is not exactly 24 + m bytes
long, return INVALID.

e. I = next 16 bytes of the public key

f. T[1l] = next m bytes of the public key

McGrew, et al. Informational [Page 24]



RFC 8554 LMS Hash-Based Signatures April 2019

3. Compute the LMS Public Key Candidate Tc from the signature,
message, identifier, pubtype, and ots_typecode, using
Algorithm 6a.

4. If Tc is equal to T[1l], return VALID; otherwise, return INVALID.

Algorithm 6a: Computing an LMS Public Key Candidate from a Signature,
Message, Identifier, and Algorithm Typecodes

1. If the signature is not at least eight bytes long,
return INVALID.

2. Parse sigtype, g, lmots_signature, and path from the signature
as follows:

a. q = strTou32(first 4 bytes of signature)
b. otssigtype = strTou32 (next 4 bytes of signature)

c. If otssigtype is not the OTS typecode from the public key,
return INVALID.

d. Set n, p according to otssigtype and Table 1; if the
signature is not at least 12 + n * (p + 1) bytes long,
return INVALID.

e. lmots_signature = bytes 4 through 7 + n * (p + 1)
of signature

f. sigtype = strTou32 (bytes 8 + n * (p + 1)) through
11 + n * (p + 1) of signature)

g. If sigtype is not the LM typecode from the public key,
return INVALID.

h. Set m, h according to sigtype and Table 2.

i. If g >= 2”h or the signature is not exactly
12 +n* (p + 1) +m * h bytes long,
return INVALID.

j. Set path as follows:
path[0] = next m bytes of signature
path[1l] next m bytes of signature

path[h-1] next m bytes of signature

McGrew, et al. Informational [Page 25]



RFC 8554 LMS Hash-Based Signatures April 2019

3. Kc = candidate public key computed by applying Algorithm 4b
to the signature lmots_signature, the message, and the
identifiers I, g

4. Compute the candidate LMS root value Tc as follows:
node_num = 2”~h + g
tmp = H(I || u32str(node_num) || uléstr(D_LEAF) || Kc)
i =
while (node_num > 1) {
if (node_num is odd):
tmp = H(I||u32str(node_num/2) ||uléstr (D_INTR) ||path(i]||tmp)

o ||

else:
tmp = H(I||u32str(node_num/2)||uléstr (D_INTR) ||tmp||path[i])
node_num = node_num/2

i=1+1
Tc = tmp
5. Return Tc.
6. Hierarchical Signatures
In scenarios where it is necessary to minimize the time taken by the
public key generation process, the Hierarchical Signature System
(HSS) can be used. This hierarchical scheme, which we describe in
this section, uses the LMS scheme as a component. In HSS, we have a
sequence of L 1LMS trees, where the public key for the first LMS tree
is included in the public key of the HSS system, each LMS private key
signs the next LMS public key, and the last LMS private key signs the
actual message. For example, if we have a three-level hierarchy

(L=3), then to sign a message, we would have:

The first LMS private key (level 0) signs a level 1 LMS public
key.

The second LMS private key (level 1) signs a level 2 LMS public
key.

The third LMS private key (level 2) signs the message.
The root of the level 0 LMS tree is contained in the HSS public key.
To verify the LMS signature, we would verify all the signatures:

We would verify that the level 1 LMS public key is correctly
signed by the level 0 signature.

McGrew, et al. Informational [Page 26]



RFC 8554 LMS Hash-Based Signatures April 2019

We would verify that the level 2 LMS public key is correctly
signed by the level 1 signature.

We would verify that the message is correctly signed by the level
2 signature.

We would accept the HSS signature only if all the signatures
validated.

During the signature-generation process, we sign messages with the
lowest (level L-1) LMS tree. Once we have used all the leafs in that
tree to sign messages, we would discard it, generate a fresh LMS
tree, and sign it with the next (level L-2) LMS tree (and when that
is used up, recursively generate and sign a fresh level L-2 LMS
tree).

HSS, in essence, utilizes a tree of LMS trees. There is a single LMS
tree at level 0 (the root). Each LMS tree (actually, the private key
corresponding to the LMS tree) at level i is used to sign 2"h obijects
(where h is the height of trees at level i). If i < L-1, then each
object will be another LMS tree (actually, the public key) at level
i+l; if i = L-1, we’ve reached the bottom of the HSS tree, and so
each object will be a message from the application. The HSS public
key contains the public key of the LMS tree at the root, and an HSS
signature is associated with a path from the root of the HSS tree to
the leaf.

Compared to LMS, HSS has a much reduced public key generation time,
as only the root tree needs to be generated prior to the distribution
of the HSS public key. For example, an L=3 tree (with h=10 at each
level) would have one level 0 LMS tree, 2710 level 1 LMS trees (with
each such level 1 public key signed by one of the 1024 level 0 OTS
public keys), and 2720 level 2 ILMS trees. Only 1024 OTS public keys
need to be computed to generate the HSS public key (as you need to
compute only the level 0 LMS tree to compute that wvalue; you can, of
course, decide to compute the initial level 1 and level 2 LMS trees).
In addition, the 2720 level 2 LMS trees can jointly sign a total of
over a billion messages. In contrast, a single LMS tree that could
sign a billion messages would require a billion OTS public keys to be
computed first (if h=30 were allowed in a supported parameter set).

Each ILMS tree within the hierarchy is associated with a distinct LMS
public key, private key, signature, and identifier. The number of
levels is denoted as L and is between one and eight, inclusive. The
following notation is used, where i is an integer between 0 and L-1
inclusive, and the root of the hierarchy is level O0:

prv[i] is the current LMS private key of the i-th level.

McGrew, et al. Informational [Page 27]



RFC 8554 LMS Hash-Based Signatures April 2019

pub[i] is the current LMS public key of the i-th level, as
described in Section 5.3.

sig[i] i1s the 1LMS signature of public key pub[i+l] generated using
the private key prv[i].

It is expected that the above arrays are maintained for the course of
the HSS key. The contents of the prv[] array MUST be kept private;
the pub[] and sig[] array may be revealed should the implementation
find that convenient.

In this section, we say that an N-time private key is exhausted when
it has generated N signatures; thus, it can no longer be used for
signing.

For i > 0, the wvalues prv[i]l, pub[i], and (for all values of i)
sig[i] will be updated over time as private keys are exhausted and
replaced by newer keys.

When these key pairs are updated (or initially generated before the
first message is signed), then the LMS key generation processes
outlined in Sections 5.2 and 5.3 are performed. If the generated key
pairs are for level i of the HSS hierarchy, then we store the public

key in pub[i] and the private key in prv[i]. In addition, if i > O,
then we sign the generated public key with the LMS private key at
level i-1, placing the signature into sig[i-1]. When the LMS key

pair is generated, the key pair and the corresponding identifier MUST
be generated independently of all other key pairs.

HSS allows L=1, in which case the HSS public key and signature
formats are essentially the LMS public key and signature formats,
prepended by a fixed field. Since HSS with L=1 has very little
overhead compared to LMS, all implementations MUST support HSS in
order to maximize interoperability.

We specifically allow different LMS levels to use different parameter
sets. For example, the 0-th LMS public key (the root) may use the
LMS_SHA256_M32_H15 parameter set, while the 1-th public key may use
IMS_SHA256_M32_H10. There are practical reasons to allow this; for
one, the signer may decide to store parts of the 0-th 1LMS tree (that
it needs to construct while computing the public key) to accelerate
later operations. As the 0-th tree is never updated, these internal
nodes will never need to be recomputed. In addition, during the
signature—-generation operation, almost all the operations involved
with updating the authentication path occur with the bottom (L-1th)
LMS public key; hence, it may be useful to select the parameter set
for that public key to have a shorter LMS tree.

McGrew, et al. Informational [Page 28]



RFC 8554 LMS Hash-Based Signatures April 2019

A close reading of the HSS verification pseudocode shows that it
would allow the parameters of the nontop LMS public keys to change
over time; for example, the signer might initially have the 1-th LMS
public key use the LMS_SHA256_M32_H10 parameter set, but when that
tree is exhausted, the signer might replace it with an LMS public key
that uses the LMS_SHA256_M32_H15 parameter set. While this would
work with the example verification pseudocode, the signer MUST NOT
change the parameter sets for a specific level. This prohibition is
to support verifiers that may keep state over the course of several
signature verifications.

6.1. Key Generation

The public key of the HSS scheme consists of the number of levels L,
followed by pub[0], the public key of the top level.

The HSS private key consists of prv[0], ... , prv[L-1], along with
the associated pub[0], ... pub[L-1] and sig[0], ..., sig[L-2] wvalues.
As stated earlier, the values of the pub[] and sig[] arrays need not
be kept secret and may be revealed. The value of pub[0] does not
change (and, except for the index g, the value of prv[0] need not
change); however, the values of pub[i] and prv[i] are dynamic for i >
0 and are changed by the signature-generation algorithm.

During the key generation, the public and private keys are
initialized. Here is some pseudocode that explains the key-
generation logic:

Algorithm 7: Generating an HSS Key Pair
1. Generate an LMS key pair, as specified in Sections 5.2 and 5.3,
placing the private key into priv[0], and the public key into
pub [0]
2. For 1 = 1 to L-1 do {
generate an LMS key pair, placing the private key into priv[i]

and the public key into pub[i]

sig[i-1] = lms_signature( pub[i], priv[i-1] )

}

3. Return u32str (L) || pub[0] as the public key and the priv][],
pub[], and sig[] arrays as the private key
In the above algorithm, each LMS public/private key pair generated

MUST be generated independently.

McGrew, et al. Informational [Page 29]



RFC 85

Not
exe
del
sig

6.2.

To
per

54 LMS Hash-Based Signatures April 2019

e that the value of the public key does not depend on the
cution of step 2. As a result, an implementation may decide to
ay step 2 until later —-- for example, during the initial
nature—generation operation.

Signature Generation

sign a message using an HSS key pair, the following steps are
formed:

If prv[L-1] is exhausted, then determine the smallest integer d
such that all of the private keys prv[d], prv[d+1l], ... , prv[L-1]
are exhausted. If d is equal to zero, then the HSS key pair is
exhausted, and it MUST NOT generate any more signatures.
Otherwise, the key pairs for levels d through L-1 must be
regenerated during the signature—-generation process, as follows.
For i from d to L-1, a new LMS public and private key pair with a
new identifier is generated, pub[i] and prv[i] are set to those
values, then the public key pub[i] is signed with prv([i-1], and
sig[i-1] is set to the resulting value.

The message is signed with prv[L-1], and the value sig[L-1] is set
to that result.

The value of the HSS signature is set as follows. We let
signed_pub_key denote an array of octet strings, where
signed_pub_key[i] = sig[i] || pub[i+l], for i between 0 and
Nspk—-1, inclusive, where Nspk = L-1 denotes the number of signed
public keys. Then the HSS signature is u32str (Nspk) ||
signed_pub_key[0] || ... || signed_pub_key [Nspk-1] || sig[Nspk].

Note that the number of signed_pub_key elements in the signature
is indicated by the value Nspk that appears in the initial four
bytes of the signature.

Here is some pseudocode of the above logic:

Algorithm 8: Generating an HSS signature

1.

If the message-signing key prv[L-1] is exhausted, regenerate
that key pair, together with any parent key pairs that might
be necessary.

If the root key pair is exhausted, then the HSS key pair is
exhausted and MUST NOT generate any more signatures.

McGrew, et al. Informational [Page 30]



RFC 8554 LMS Hash-Based Signatures April 2019

d =1L

while (prv[d-1].q == 2*(prv[d-1].h)) {
d=d-1
if (d == 0)

return FAILURE
}
while (d < L) {
create lms key pair pub[d], prv([d]
sig[d-1] = lms_signature( pub[d], prv[d-1] )
d=d+ 1
}

2. Sign the message.
sig[L-1] = lms_signature( msg, prv[L-1] )

3. Create the list of signed public keys.

i = 0;
while (i < L-1) {
signed_pub_key[i] = sig[i] || pub[i+1]
i=1+1
}
4. Return u32str(L-1) || signed_pub_key[0] ||

|| signed_pub_key[L—é] || sig[L-1]

In the specific case of L=1, the format of an HSS signature is
u32str(0) || sigl0]
In the general case, the format of an HSS signature is

u32str (Nspk) || signed_pub_key[O0] || ce
| | signed_pub_key[Nspk-1] || sig[Nspk]

which is equivalent to

u32str (Nspk) || sigl[0] || publ1l || ...
|| sig[Nspk-1] || pub [Nspk] || sig[Nspk]

McGrew, et al. Informational [Page 31]



RFC 8554 LMS Hash-Based Signatures April 2019

6.3. Signature Verification

To verify a signature S and message using the public key pub, perform
the following steps:

The signature S is parsed into its components as follows:

Nspk = strTou32 (first four bytes of 3)

if Nspk+l is not equal to the number of levels L in pub:
return INVALID

for (i = 0; i < Nspk; i =1 + 1) {

siglist[i] = next LMS signature parsed from S
publist[i] = next LMS public key parsed from S
}
siglist [Nspk] = next LMS signature parsed from S
key = pub

for (i = 0; 1 < Nspk; 1 =1 + 1) {
sig = siglist[i]
msg = publist[i]
if (lms_verify(msg, key, sig) != VALID):
return INVALID
key = msg
}

return lms_verify (message, key, siglist[Nspk])

Since the length of an LMS signature cannot be known without parsing
it, the HSS signature verification algorithm makes use of an LMS
signature parsing routine that takes as input a string consisting of
an LMS signature with an arbitrary string appended to it and returns
both the LMS signature and the appended string. The latter is passed
on for further processing.

6.4. Parameter Set Recommendations

As for guidance as to the number of LMS levels and the size of each,
any discussion of performance is implementation specific. 1In
general, the sole drawback for a single LMS tree is the time it takes
to generate the public key; as every LM-OTS public key needs to be
generated, the time this takes can be substantial. For a two-level
tree, only the top-level LMS tree and the initial bottom-level LMS
tree need to be generated initially (before the first signature is
generated); this will in general be significantly quicker.

To give a general idea of the trade-offs available, we include some
measurements taken with the LMS implementation available at
<https://github.com/cisco/hash-sigs>, taken on a 3.3 GHz Xeon
processor with threading enabled. We tried various parameter sets,

McGrew, et al. Informational [Page 32]



RFC 8554 LMS Hash-Based Signatures April 2019

all with W=8 (which minimizes signature size, while increasing time).
These are here to give a guideline as to what’s possible; for the
computational time, your mileage may vary, depending on the computing
resources you have. The machine these tests were performed on does
not have the SHA-256 extensions; you could possibly do significantly

better.
t————— t———————— t————— t—————— +
| ParmSet | KeyGenTime | SigSize | KeyLifetime |
t——————— o —————— t——————— e ——— +
15 6 sec 1616 30 seconds
20 3 min 1776 16 minutes
25 1.5 hour 1936 9 hours
15/10 6 sec 3172 9 hours
15/15 6 sec 3332 12 days
20/10 3 min 3332 12 days
20/15 3 min 3492 1 year
25/10 1.5 hour 3492 1 year
25/15 1.5 hour 3652 34 years
t——————— o —————— t——————— e ——— +
Table 3
ParmSet: this is the height of the Merkle tree(s); parameter sets

listed as a single integer have L=1 and consist of a single Merkle
tree of that height; parameter sets with L=2 are listed as x/y,
with x being the height of the top-level Merkle tree and y being
the bottom level.

KeyGenTime: the measured key-generation time; that is, the time
needed to generate the public/private key pair.

SigSize: the size of a signature (in bytes)

KeyLifetime: the lifetime of a key, assuming we generated 1000
signatures per second. In practice, we’re not likely to get
anywhere close to 1000 signatures per second sustained; if you
have a more appropriate figure for your scenario, this column is
easy to recompute.

McGrew, et al. Informational [Page 33]



RFC 8554 LMS Hash-Based Signatures April 2019

As for signature generation or verification times, those are
moderately insensitive to the above parameter settings (except for
the Winternitz setting and the number of Merkle trees for
verification). Tests on the same machine (without multithreading)
gave approximately 4 msec to sign a short message, 2.6 msec to
verify; these tests used a two-level ParmSet; a single level would
approximately halve the verification time. All times can be
significantly improved (by perhaps a factor of 8) by using a
parameter set with W=4; however, that also about doubles the
signature size.

7. Rationale

The goal of this note is to describe the LM-0TS, LMS, and HSS
algorithms following the original references and present the modern
security analysis of those algorithms. Other signature methods are
out of scope and may be interesting follow-on work.

We adopt the techniques described by Leighton and Micali to mitigate
attacks that amortize their work over multiple invocations of the
hash function.

The values taken by the identifier I across different LMS public/
private key pairs are chosen randomly in order to improve security.
The analysis of this method in [Fluhrerl7] shows that we do not need
uniqueness to ensure security; we do need to ensure that we don’t
have a large number of private keys that use the same I value. By
randomly selecting 16-byte I values, the chance that, out of 2764
private keys, 4 or more of them will use the same I value is
negligible (that is, has probability less than 27-128).

The reason 1l6-byte I values were selected was to optimize the
Winternitz hash-chain operation. With the current settings, the
value being hashed is exactly 55 bytes long (for a 32-byte hash
function), which SHA-256 can hash in a single hash-compression
operation. Other hash functions may be used in future
specifications; all the ones that we will be likely to support
(SHA-512/256 and the various SHA-3 hashes) would work well with a
l6-byte I value.

The signature and public key formats are designed so that they are
relatively easy to parse. Each format starts with a 32-bit
enumeration value that indicates the details of the signature
algorithm and provides all of the information that is needed in order
to parse the format.

McGrew, et al. Informational [Page 34]



RFC 8554 LMS Hash-Based Signatures April 2019

The Checksum (Section 4.4) is calculated using a nonnegative integer
"sum" whose width was chosen to be an integer number of w-bit fields
such that it is capable of holding the difference of the total

possible number of applications of the function H (as defined in the

signing algorithm of Section 4.5) and the total actual number. In
the case that the number of times H is applied is 0, the sum is (2"w
- 1) * (8*n/w). Thus, for the purposes of this document, which

describes signature methods based on H = SHA256 (n = 32 bytes) and w
= {1, 2, 4, 8 }, the sum variable is a 16-bit nonnegative integer
for all combinations of n and w. The calculation uses the parameter
ls defined in Section 4.1 and calculated in Appendix B, which
indicates the number of bits used in the left-shift operation.

7.1. Security String

To improve security against attacks that amortize their effort
against multiple invocations of the hash function, Leighton and
Micali introduced a "security string" that is distinct for each
invocation of that function. Whenever this process computes a hash,
the string being hashed will start with a string formed from the
fields below. These fields will appear in fixed locations in the
value we compute the hash of, and so we list where in the hash these

fields would be present. The fields that make up this string are as
follows:
I A 16-byte identifier for the LMS public/private key pair. It

MUST be chosen uniformly at random, or via a pseudorandom
process, at the time that a key pair is generated, in order to
minimize the probability that any specific value of I be used
for a large number of different LMS private keys. This is
always bytes 0-15 of the value being hashed.

r In the LMS N-time signature scheme, the node number r
associated with a particular node of a hash tree is used as an
input to the hash used to compute that node. This value is

represented as a 32-bit (four byte) unsigned integer in network
byte order. Either r or g (depending on the domain-separation
parameter) will be bytes 16-19 of the value being hashed.

q In the LMS N-time signature scheme, each LM-OTS signature is
associated with the leaf of a hash tree, and g is set to the
leaf number. This ensures that a distinct value of g is used
for each distinct LM-OTS public/private key pair. This value
is represented as a 32-bit (four byte) unsigned integer in
network byte order. Either r or g (depending on the domain-
separation parameter) will be bytes 16-19 of the value being
hashed.

McGrew, et al. Informational [Page 35]



RFC 8554 LMS Hash-Based Signatures April 2019

D A domain-separation parameter, which is a two-byte identifier
that takes on different values in the different contexts in
which the hash function is invoked. D occurs in bytes 20 and
21 of the value being hashed and takes on the following values:

D_PBLC 0x8080 when computing the hash of all of the
iterates in the LM-OTS algorithm

D_MESG = 0x8181 when computing the hash of the message in
the LM-OTS algorithms

D_LEAF
LMS tree

0x8282 when computing the hash of the leaf of an

D_INTR = 0x8383 when computing the hash of an interior node
of an LMS tree

i A value between 0 and 264; this is used in the LM-0OTS scheme
when either computing the iterations of the Winternitz chain or
using the suggested LM-OTS private key generation process. It
is represented as a 16-bit (two-byte) unsigned integer in
network byte order. If present, it occurs at bytes 20 and 21
of the value being hashed.

j In the LM-OTS scheme, j is the iteration number used when the
private key element is being iteratively hashed. It is
represented as an 8-bit (one byte) unsigned integer and is
present if i is a value between 0 and 264. If present, it
occurs at bytes 22 to 21+n of the value being hashed.

C An n-byte randomizer that is included with the message whenever
it is being hashed to improve security. C MUST be chosen
uniformly at random or via another unpredictable process. It

is present if D=D_MESG, and it occurs at bytes 22 to 21+n of
the value being hashed.

8. IANA Considerations

IANA has created two registries: "LM-OTS Signatures", which includes
all of the LM-OTS signatures as defined in Section 4, and "Leighton-
Micali Signatures (LMS)" for LMS as defined in Section 5.

Additions to these registries require that a specification be
documented in an RFC or another permanent and readily available
reference in sufficient detail that interoperability between
independent implementations is possible [RFC8126]. IANA MUST verify
that all applications for additions to these registries have first
been reviewed by the IRTF Crypto Forum Research Group (CFRG).

McGrew, et al. Informational [Page 36]



RFC 8554 LMS Hash-Based Signatures April 2019

Each entry in either of the registries contains the following
elements:

a short name (Name), such as "LMS_SHA256_M32_H10",
a positive number (Numeric Identifier), and

a Reference to a specification that completely defines the
signature-method test cases that can be used to verify the
correctness of an implementation.

The numbers between 0xDDDDDDDD (decimal 3,722,304,989) and OxXFFFFFFFF
(decimal 4,294,967,295), inclusive, will not be assigned by IANA and
are reserved for private use; no attempt will be made to prevent
multiple sites from using the same value in different (and
incompatible) ways [RFC8126].

The initial contents of the "LM-OTS Signatures" registry are as

follows.

o Fom o +

| Name Reference Numeric Identifier

ettt do— ettt +
Reserved 0x00000000
LMOTS_SHA256_N32_W1 Section 4 0x00000001
LMOTS_SHA256_N32_W2 Section 4 0x00000002
LMOTS_SHA256_N32_W4 Section 4 0x00000003
LMOTS_SHA256_N32_W8 Section 4 0x00000004
Unassigned 0x00000005 - 0xDDDDDDDC
Reserved for Private Use 0xDDDDDDDD - OXFFFFFFFEF

o fom o +

Table 4

McGrew, et al. Informational [Page 37]



RFC 8554 LMS Hash-Based Signatures April 2019

The initial contents of the "Leighton Micali Signatures (LMS)"
registry are as follows.

t——— F————— t——— +

| Name Reference Numeric Identifier

t————————————— t—————— t————————————— +
Reserved 0x0 - 0Ox4
LMS_SHA256_M32_H5 Section 5 0x00000005
ILMS_SHA256_M32_H10 Section 5 0x00000006
LMS_SHA256_M32_H15 Section 5 0x00000007
ILMS_SHA256_M32_H20 Section 5 0x00000008
ILMS_SHA256_M32_H25 Section 5 0x00000009
Unassigned 0x0000000A - 0xDDDDDDDC
Reserved for Private Use 0xDDDDDDDD - OXFFFFFFFF

t——— F————— t——— +

Table 5

An IANA registration of a signature system does not constitute an
endorsement of that system or its security.

Currently, the two registries assign a disjoint set of values to the
defined parameter sets. This coincidence is a historical accident;
the correctness of the system does not depend on this. IANA is not
required to maintain this situation.

9. Security Considerations

The hash function H MUST have second preimage resistance: it must be
computationally infeasible for an attacker that is given one message
M to be able to find a second message M’ such that H(M) = H(M').

The security goal of a signature system is to prevent forgeries. A
successful forgery occurs when an attacker who does not know the
private key associated with a public key can find a message (distinct
from all previously signed ones) and signature that is wvalid with
that public key (that is, the Signature Verification algorithm
applied to that signature and message and public key will return

VALID). Such an attacker, in the strongest case, may have the
ability to forge wvalid signatures for an arbitrary number of other
messages.

McGrew, et al. Informational [Page 38]



RFC 8554 LMS Hash-Based Signatures April 2019

IMS is provably secure in the random oracle model, as shown by

[Katz16]. 1In addition, further analysis is done by [Fluhrerl7],
where the hash compression function (rather than the entire hash
function) is considered to be a random oracle. Corollary 1 of the

latter paper states:

If we have no more than 2764 randomly chosen LMS private keys,
allow the attacker access to a signing oracle and a SHA-256 hash
compression oracle, and allow a maximum of 27120 hash compression
computations, then the probability of an attacker being able to
generate a single forgery against any of those LMS keys is less
than 27-129.

Many of the objects within the public key and the signature start
with a typecode. A verifier MUST check each of these typecodes, and
a verification operation on a signature with an unknown type, or a
type that does not correspond to the type within the public key, MUST
return INVALID. The expected length of a variable-length object can
be determined from its typecode; if an object has a different length,
then any signature computed from the object is INVALID.

9.1. Hash Formats

The format of the inputs to the hash function H has the property that
each invocation of that function has an input that is repeated by a
small bounded number of other inputs (due to potential repeats of the
I value). In particular, it will vary somewhere in the first 23
bytes of the value being hashed. This property is important for a
proof of security in the random oracle model.

The formats used during key generation and signing (including the
recommended pseudorandom key-generation procedure in Appendix A) are
as follows:

I || u32str(q) || uléstr(i) || u8str(3) || tmp

I || u32str (q) || ul6str (D_PBLC) || yI[0] || ... || y[p—-1]
I || u32str(q) || uléstr(D_MESG) || C || message

I || u32str(r) || uléstr(D_LEAF) || OTS_PUB_HASH[r-2"h]

I || u32str(r) || uléstr(D_INTR) || T[2*r] || T[2*r+1]

I || u32str(g) || uléstr(i) || u8str(0xff) || SEED

Each hash type listed is distinct; at locations 20 and 21 of the
value being hashed, there exists either a fixed value D_PBLC, D_MESG,
D_LEAF, D_INTR, or a 16-bit value i. These fixed values are distinct
from each other and are large (over 32768), while the 16-bit wvalues
of 1 are small (currently no more than 265; possibly being slightly
larger if larger hash functions are supported); hence, the range of
possible values of i will not collide any of the D_PBLC, D_MESG,

McGrew, et al. Informational [Page 39]



RFC 8554 LMS Hash-Based Signatures April 2019

D_LEAF, D_INTR identifiers. The only other collision possibility is
the Winternitz chain hash colliding with the recommended pseudorandom
key—-generation process; here, at location 22 of the value being
hashed, the Winternitz chain function has the value u8str(j), where j
is a value between 0 and 254, while location 22 of the recommended
pseudorandom key—-generation process has wvalue 255.

For the Winternitz chaining function, D_PBLC, and D_MESG, the value
of I || u32str(g) is distinct for each LMS leaf (or equivalently, for
each g value). For the Winternitz chaining function, the value of
uléstr(i) || u8str(j) is distinct for each invocation of H for a
given leaf. For D_PBLC and D_MESG, the input format is used only
once for each value of g and, thus, distinctness is assured. The
formats for D_INTR and D_LEAF are used exactly once for each value of
r, which ensures their distinctness. For the recommended
pseudorandom key-generation process, for a given value of I, g and j
are distinct for each invocation of H.

The value of I is chosen uniformly at random from the set of all
128-bit strings. If 2764 public keys are generated (and, hence, 2764
random I values), there is a nontrivial probability of a duplicate
(which would imply duplicate prefixes). However, there will be an
extremely high probability there will not be a four-way collision
(that is, any I wvalue used for four distinct LMS keys; probability <
27-132), and, hence, the number of repeats for any specific prefix
will be limited to at most three. This is shown (in [Fluhrerl7]) to
have only a limited effect on the security of the system.

9.2. Stateful Signature Algorithm

The LMS signature system, like all N-time signature systems, requires
that the signer maintain state across different invocations of the
signing algorithm to ensure that none of the component one-time
signature systems are used more than once. This section calls out
some important practical considerations around this statefulness.
These issues are discussed in greater detail in [STMGMT].

In a typical computing environment, a private key will be stored in
nonvolatile media such as on a hard drive. Before it is used to sign
a message, it will be read into an application’s Random-Access Memory

(RAM) . After a signature is generated, the value of the private key
will need to be updated by writing the new value of the private key
into nonvolatile storage. It is essential for security that the

application ensures that this value is actually written into that
storage, yet there may be one or more memory caches between it and
the application. Memory caching is commonly done in the file system
and in a physical memory unit on the hard disk that is dedicated to
that purpose. To ensure that the updated value is written to

McGrew, et al. Informational [Page 40]



RFC 8554 LMS Hash-Based Signatures April 2019

physical media, the application may need to take several special
steps. In a POSIX environment, for instance, the O_SYNC flag (for
the open() system call) will cause invocations of the write() system
call to block the calling process until the data has been written to
the underlying hardware. However, if that hardware has its own
memory cache, it must be separately dealt with using an operating
system or device-specific tool such as hdparm to flush the on-drive
cache or turn off write caching for that drive. Because these
details vary across diffe