
Secure Frame (SFrame)

Abstract

This document describes the Secure Frame (SFrame) end-to-end encryption and authentication

mechanism for media frames in a multiparty conference call, in which central media servers

(Selective Forwarding Units or SFUs) can access the media metadata needed to make forwarding

decisions without having access to the actual media.

This mechanism differs from the Secure Real-Time Protocol (SRTP) in that it is independent of

RTP (thus compatible with non-RTP media transport) and can be applied to whole media frames

in order to be more bandwidth efficient.

Workgroup:

Internet-Draft:

Published:

Intended Status:

Expires:

Authors:

sframe

draft-ietf-sframe-enc-latest

24 June 2024

Standards Track

26 December 2024

 E. Omara

Apple

J. Uberti

Google

S. Murillo

CoSMo Software

R. L. Barnes, Ed.

Cisco

Y. Fablet

Apple

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that

other groups may also distribute working documents as Internet-Drafts. The list of current

Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,

replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts

as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 26 December 2024.

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Omara, et al. Expires 26 December 2024 Page 1

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Goals

4. SFrame

4.1. Application Context

4.2. SFrame Ciphertext

4.3. SFrame Header

4.4. Encryption Schema

4.4.1. Key Selection

4.4.2. Key Derivation

4.4.3. Encryption

4.4.4. Decryption

4.5. Cipher Suites

4.5.1. AES-CTR with SHA2

5. Key Management

5.1. Sender Keys

5.2. MLS

6. Media Considerations

6.1. Selective Forwarding Units

6.1.1. LastN and RTP Stream Reuse

6.1.2. Simulcast

6.1.3. SVC

6.2. Video Key Frames

6.3. Partial Decoding

7. Security Considerations

7.1. No Header Confidentiality

4

4

5

5

5

7

7

9

9

10

11

12

14

15

16

17

18

20

20

20

20

20

20

21

21

21

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 2

7.2. No per-Sender Authentication

7.3. Key Management

7.4. Replay

7.5. Risks Due to Short Tags

8. IANA Considerations

8.1. SFrame Cipher Suites

9. Application Responsibilities

9.1. Header Value Uniqueness

9.2. Key Management Framework

9.3. Anti-Replay

9.4. Metadata

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Example API

Appendix B. Overhead Analysis

B.1. Assumptions

B.2. Audio

B.3. Video

B.4. Conferences

B.5. SFrame over RTP

Appendix C. Test Vectors

C.1. Header Encoding/Decoding

C.2. AEAD Encryption/Decryption Using AES-CTR and HMAC

C.3. SFrame Encryption/Decryption

Acknowledgements

Contributors

Authors' Addresses

21

21

22

22

23

23

24

24

24

25

25

25

25

26

27

28

29

29

30

31

31

33

34

63

64

67

68

68

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 3

1. Introduction

Modern multiparty video call systems use Selective Forwarding Unit (SFU) servers to efficiently

route media streams to call endpoints based on factors such as available bandwidth, desired

video size, codec support, and other factors. An SFU typically does not need access to the media

content of the conference, which allows the media to be encrypted "end to end" so that it cannot

be decrypted by the SFU. In order for the SFU to work properly, though, it usually needs to be

able to access RTP metadata and RTCP feedback messages, which is not possible if all RTP/RTCP

traffic is end-to-end encrypted.

As such, two layers of encryption and authentication are required:

Hop-by-hop (HBH) encryption of media, metadata, and feedback messages between the

endpoints and SFU

End-to-end (E2E) encryption (E2EE) of media between the endpoints

The Secure Real-Time Protocol (SRTP) is already widely used for HBH encryption . The

SRTP "double encryption" scheme defines a way to do E2E encryption in SRTP .

Unfortunately, this scheme has poor efficiency and high complexity, and its entanglement with

RTP makes it unworkable in several realistic SFU scenarios.

This document proposes a new E2EE protection scheme known as SFrame, specifically designed

to work in group conference calls with SFUs. SFrame is a general encryption framing that can be

used to protect media payloads, agnostic of transport.

1.

2.

[RFC3711]

[RFC8723]

MAC:

E2EE:

HBH:

2. Terminology

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

Message Authentication Code

End-to-End Encryption

Hop-By-Hop

We use "Selective Forwarding Unit (SFU)" and "media stream" in a less formal sense than in

. An SFU is a selective switching function for media payloads, and a media stream a

sequence of media payloads, in both cases regardless of whether those media payloads are

transported over RTP or some other protocol.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC7656]

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 4

3. Goals

SFrame is designed to be a suitable E2EE protection scheme for conference call media in a broad

range of scenarios, as outlined by the following goals:

Provide a secure E2EE mechanism for audio and video in conference calls that can be used

with arbitrary SFU servers.

Decouple media encryption from key management to allow SFrame to be used with an

arbitrary key management system.

Minimize packet expansion to allow successful conferencing in as many network conditions

as possible.

Independence from the underlying transport, including use in non-RTP transports, e.g.,

WebTransport .

When used with RTP and its associated error-resilience mechanisms, i.e., RTX and Forward

Error Correction (FEC), require no special handling for RTX and FEC packets.

Minimize the changes needed in SFU servers.

Minimize the changes needed in endpoints.

Work with the most popular audio and video codecs used in conferencing scenarios.

1.

2.

3.

4.

[I-D.ietf-webtrans-overview]

5.

6.

7.

8.

4. SFrame

This document defines an encryption mechanism that provides effective E2EE, is simple to

implement, has no dependencies on RTP, and minimizes encryption bandwidth overhead. This

section describes how the mechanism works and includes details of how applications utilize

SFrame for media protection as well as the actual mechanics of E2EE for protecting media.

4.1. Application Context

SFrame is a general encryption framing, intended to be used as an E2EE layer over an underlying

HBH-encrypted transport such as SRTP or QUIC .

The scale at which SFrame encryption is applied to media determines the overall amount of

overhead that SFrame adds to the media stream as well as the engineering complexity involved

in integrating SFrame into a particular environment. Two patterns are common: using SFrame to

encrypt either whole media frames (per frame) or individual transport-level media payloads (per

packet).

For example, Figure 1 shows a typical media sender stack that takes media from some source,

encodes it into frames, divides those frames into media packets, and then sends those payloads in

SRTP packets. The receiver stack performs the reverse operations, reassembling frames from

SRTP packets and decoding. Arrows indicate two different ways that SFrame protection could be

integrated into this media stack: to encrypt whole frames or individual media packets.

[RFC3711][I-D.ietf-moq-transport]

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 5

Applying SFrame per frame in this system offers higher efficiency but may require a more

complex integration in environments where depacketization relies on the content of media

packets. Applying SFrame per packet avoids this complexity at the cost of higher bandwidth

consumption. Some quantitative discussion of these trade-offs is provided in Appendix B.

As noted above, however, SFrame is a general media encapsulation and can be applied in other

scenarios. The important thing is that the sender and receivers of an SFrame-encrypted object

agree on that object's semantics. SFrame does not provide this agreement; it must be arranged by

the application.

Figure 1: Two Options for Integrating SFrame in a Typical Media Stack

HBH

Encode Packetize Protect

SFrame SFrame

Protect Protect

Alice (per frame) (per packet)

E2E Key HBH Key Media

Management Management Server

SFrame SFrame

Unprotect Unprotect

(per frame) (per packet)

HBH

Decode Depacketize Unprotect

Bob

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 6

Like SRTP, SFrame does not define how the keys used for SFrame are exchanged by the parties in

the conference. Keys for SFrame might be distributed over an existing E2E-secure channel (see

Section 5.1) or derived from an E2E-secure shared secret (see Section 5.2). The key management

system ensure that each key used for encrypting media is used by exactly one media

sender in order to avoid reuse of nonces.

MUST

4.2. SFrame Ciphertext

An SFrame ciphertext comprises an SFrame header followed by the output of an Authenticated

Encryption with Associated Data (AEAD) encryption of the plaintext , with the header

provided as additional authenticated data (AAD).

The SFrame header is a variable-length structure described in detail in Section 4.3. The structure

of the encrypted data and authentication tag are determined by the AEAD algorithm in use.

When SFrame is applied per packet, the payload of each packet will be an SFrame ciphertext.

When SFrame is applied per frame, the SFrame ciphertext representing an encrypted frame will

span several packets, with the header appearing in the first packet and the authentication tag in

the last packet. It is the responsibility of the application to reassemble an encrypted frame from

individual packets, accounting for packet loss and reordering as necessary.

[RFC5116]

K KLEN C CLEN Key ID Counter

Encrypted Data

Authentication Tag

Encrypted Portion Authenticated Portion

4.3. SFrame Header

The SFrame header specifies two values from which encryption parameters are derived:

A Key ID (KID) that determines which encryption key should be used

A counter (CTR) that is used to construct the nonce for the encryption

•

•

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 7

Extended Key ID Flag (X, 1 bit):

Key or Key Length (K, 3 bits):

Extended Counter Flag (Y, 1 bit):

Counter or Counter Length (C, 3 bits):

Applications ensure that each (KID, CTR) combination is used for exactly one SFrame

encryption operation. A typical approach to achieve this guarantee is outlined in Section 9.1.

The SFrame header has the overall structure shown in Figure 2. The first byte is a "config byte",

with the following fields:

Indicates if the K field contains the Key ID or the Key ID length.

If the X flag is set to 0, this field contains the Key ID. If the X flag is

set to 1, then it contains the length of the Key ID, minus one.

Indicates if the C field contains the counter or the counter

length.

This field contains the counter (CTR) if the Y flag is set to

0, or the counter length, minus one, if set to 1.

The Key ID and Counter fields are encoded as compact unsigned integers in network (big-endian)

byte order. If the value of one of these fields is in the range 0-7, then the value is carried in the

corresponding bits of the config byte (K or C) and the corresponding flag (X or Y) is set to zero.

Otherwise, the value be encoded with the minimum number of bytes required and

appended after the config byte, with the Key ID first and Counter second. The header field (K or

C) is set to the number of bytes in the encoded value, minus one. The value 000 represents a

length of 1, 001 a length of 2, etc. This allows a 3-bit length field to represent the value lengths

1-8.

The SFrame header can thus take one of the four forms shown in Figure 3, depending on which

of the X and Y flags are set.

MUST

Figure 2: SFrame Header

Config Byte

0 1 2 3 4 5 6 7

X K Y C KID... CTR...

MUST

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 8

Figure 3: Forms of Encoded SFrame Header

KID < 8, CTR < 8:

0 KID 0 CTR

KID < 8, CTR >= 8:

0 KID 1 CLEN CTR... (length=CLEN)

KID >= 8 CTR < 8:

1 KLEN 0 CTR KID... (length=KLEN)

KID >= 8 CTR >= 8:

1 KLEN 1 CLEN KID... (length=KLEN) CTR... (length=CLEN)

4.4. Encryption Schema

SFrame encryption uses an AEAD encryption algorithm and hash function defined by the cipher

suite in use (see Section 4.5). We will refer to the following aspects of the AEAD and the hash

algorithm below:

AEAD.Encrypt and AEAD.Decrypt - The encryption and decryption functions for the AEAD.

We follow the convention of RFC 5116 and consider the authentication tag part of

the ciphertext produced by AEAD.Encrypt (as opposed to a separate field as in SRTP

).

AEAD.Nk - The size in bytes of a key for the encryption algorithm

AEAD.Nn - The size in bytes of a nonce for the encryption algorithm

AEAD.Nt - The overhead in bytes of the encryption algorithm (typically the size of a "tag" that

is added to the plaintext)

AEAD.Nka - For cipher suites using the compound AEAD described in Section 4.5.1, the size in

bytes of a key for the underlying Advanced Encryption Standard Counter Mode (AES-CTR)

algorithm

Hash.Nh - The size in bytes of the output of the hash function

•

[RFC5116]

[RFC3711]

•

•

•

•

•

4.4.1. Key Selection

Each SFrame encryption or decryption operation is premised on a single secret base_key, which

is labeled with an integer KID value signaled in the SFrame header.

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 9

The sender and receivers need to agree on which base_key should be used for a given KID.

Moreover, senders and receivers need to agree on whether a base_key will be used for

encryption or decryption only. The process for provisioning base_key values and their KID

values is beyond the scope of this specification, but its security properties will bound the

assurances that SFrame provides. For example, if SFrame is used to provide E2E security against

intermediary media nodes, then SFrame keys need to be negotiated in a way that does not make

them accessible to these intermediaries.

For each known KID value, the client stores the corresponding symmetric key base_key. For keys

that can be used for encryption, the client also stores the next counter value CTR to be used when

encrypting (initially 0).

When encrypting a plaintext, the application specifies which KID is to be used, and the counter is

incremented after successful encryption. When decrypting, the base_key for decryption is

selected from the available keys using the KID value in the SFrame header.

A given base_key be used for encryption by multiple senders. Such reuse would result

in multiple encrypted frames being generated with the same (key, nonce) pair, which harms the

protections provided by many AEAD algorithms. Implementations mark each base_key as

usable for encryption or decryption, never both.

Note that the set of available keys might change over the lifetime of a real-time session. In such

cases, the client will need to manage key usage to avoid media loss due to a key being used to

encrypt before all receivers are able to use it to decrypt. For example, an application may make

decryption-only keys available immediately, but delay the use of keys for encryption until (a) all

receivers have acknowledged receipt of the new key, or (b) a timeout expires.

MUST NOT

MUST

4.4.2. Key Derivation

SFrame encryption and decryption use a key and salt derived from the base_key associated with

a KID. Given a base_key value, the key and salt are derived using HMAC-based Key Derivation

Function (HKDF) as follows:

In the derivation of sframe_secret:

The + operator represents concatenation of byte strings.

The KID value is encoded as an 8-byte big-endian integer, not the compressed form used in

the SFrame header.

[RFC5869]

def derive_key_salt(KID, base_key):
 sframe_secret = HKDF-Extract("", base_key)

 sframe_key_label = "SFrame 1.0 Secret key " + KID + cipher_suite
 sframe_key = HKDF-Expand(sframe_secret, sframe_key_label, AEAD.Nk)

 sframe_salt_label = "SFrame 1.0 Secret salt " + KID + cipher_suite
 sframe_salt = HKDF-Expand(sframe_secret, sframe_salt_label, AEAD.Nn)

 return sframe_key, sframe_salt

•

•

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 10

The cipher_suite value is a 2-byte big-endian integer representing the cipher suite in use

(see Section 8.1).

The hash function used for HKDF is determined by the cipher suite in use.

•

4.4.3. Encryption

SFrame encryption uses the AEAD encryption algorithm for the cipher suite in use. The key for

the encryption is the sframe_key and the nonce is formed by XORing the sframe_salt with the

current counter, encoded as a big-endian integer of length AEAD.Nn.

The encryptor forms an SFrame header using the CTR and KID values provided. The encoded

header is provided as AAD to the AEAD encryption operation, together with application-provided

metadata about the encrypted media (see Section 9.4).

For example, the metadata input to encryption allows for frame metadata to be authenticated

when SFrame is applied per frame. After encoding the frame and before packetizing it, the

necessary media metadata will be moved out of the encoded frame buffer to be sent in some

channel visible to the SFU (e.g., an RTP header extension).

def encrypt(CTR, KID, metadata, plaintext):
 sframe_key, sframe_salt = key_store[KID]

 # encode_big_endian(x, n) produces an n-byte string encoding the
 # integer x in big-endian byte order.
 ctr = encode_big_endian(CTR, AEAD.Nn)
 nonce = xor(sframe_salt, CTR)

 # encode_sframe_header produces a byte string encoding the
 # provided KID and CTR values into an SFrame header.
 header = encode_sframe_header(CTR, KID)
 aad = header + metadata

 ciphertext = AEAD.Encrypt(sframe_key, nonce, aad, plaintext)
 return header + ciphertext

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 11

Figure 4: Encrypting an SFrame Ciphertext

plaintext

sframe_key Key

Header KID

sframe_salt

Nonce

CTR

metadata

AAD

AEAD.Encrypt

SFrame Ciphertext

SFrame Header

ciphertext

4.4.4. Decryption

Before decrypting, a receiver needs to assemble a full SFrame ciphertext. When an SFrame

ciphertext is fragmented into multiple parts for transport (e.g., a whole encrypted frame sent in

multiple SRTP packets), the receiving client collects all the fragments of the ciphertext, using

appropriate sequencing and start/end markers in the transport. Once all of the required

fragments are available, the client reassembles them into the SFrame ciphertext, then it passes

the ciphertext to SFrame for decryption.

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 12

The KID field in the SFrame header is used to find the right key and salt for the encrypted frame,

and the CTR field is used to construct the nonce. The SFrame decryption procedure is as follows:

If a ciphertext fails to decrypt because there is no key available for the KID in the SFrame header,

the client buffer the ciphertext and retry decryption once a key with that KID is received. If

a ciphertext fails to decrypt for any other reason, the client discard the ciphertext. Invalid

ciphertexts be discarded in a way that is indistinguishable (to an external observer)

from having processed a valid ciphertext. In other words, the SFrame decrypt operation should

be constant time, regardless of whether decryption succeeds or fails.

def decrypt(metadata, sframe_ciphertext):
 KID, CTR, header, ciphertext = parse_ciphertext(sframe_ciphertext)

 sframe_key, sframe_salt = key_store[KID]

 ctr = encode_big_endian(CTR, AEAD.Nn)
 nonce = xor(sframe_salt, ctr)
 aad = header + metadata

 return AEAD.Decrypt(sframe_key, nonce, aad, ciphertext)

MAY

MUST

SHOULD

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 13

Figure 5: Decrypting an SFrame Ciphertext

SFrame Ciphertext

SFrame Header

ciphertext

sframe_key Key

KID

sframe_salt

Nonce

CTR

metadata

AAD

AEAD.Decrypt

|

plaintext

4.5. Cipher Suites

Each SFrame session uses a single cipher suite that specifies the following primitives:

A hash function used for key derivation

An AEAD encryption algorithm used for frame encryption, optionally with a

truncated authentication tag

•

• [RFC5116]

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 14

This document defines the following cipher suites, with the constants defined in Section 4.4:

Numeric identifiers for these cipher suites are defined in the IANA registry created in Section 8.1.

In the suite names, the length of the authentication tag is indicated by the last value: "_128"

indicates a 128-bit tag, "_80" indicates an 80-bit tag, "_64" indicates a 64-bit tag, and "_32"

indicates a 32-bit tag.

In a session that uses multiple media streams, different cipher suites might be configured for

different media streams. For example, in order to conserve bandwidth, a session might use a

cipher suite with 80-bit tags for video frames and another cipher suite with 32-bit tags for audio

frames.

Name Nh Nka Nk Nn Nt

AES_128_CTR_HMAC_SHA256_80 32 16 48 12 10

AES_128_CTR_HMAC_SHA256_64 32 16 48 12 8

AES_128_CTR_HMAC_SHA256_32 32 16 48 12 4

AES_128_GCM_SHA256_128 32 n/a 16 12 16

AES_256_GCM_SHA512_128 64 n/a 32 12 16

Table 1: SFrame Cipher Suite Constants

4.5.1. AES-CTR with SHA2

In order to allow very short tag sizes, we define a synthetic AEAD function using the

authenticated counter mode of AES together with HMAC for authentication. We use an encrypt-

then-MAC approach, as in SRTP .

Before encryption or decryption, encryption and authentication subkeys are derived from the

single AEAD key. The overall length of the AEAD key is Nka + Nh, where Nka represents the key

size for the AES block cipher in use and Nh represents the output size of the hash function (as in

Table 1). The encryption subkey comprises the first Nka bytes and the authentication subkey

comprises the remaining Nh bytes.

[RFC3711]

def derive_subkeys(sframe_key):
 # The encryption key comprises the first Nka bytes
 enc_key = sframe_key[..Nka]

 # The authentication key comprises Nh remaining bytes
 auth_key = sframe_key[Nka..]

 return enc_key, auth_key

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 15

The AEAD encryption and decryption functions are then composed of individual calls to the CTR

encrypt function and HMAC. The resulting MAC value is truncated to a number of bytes Nt fixed

by the cipher suite.

def truncate(tag, n):
 # Take the first `n` bytes of `tag`
 return tag[..n]

def compute_tag(auth_key, nonce, aad, ct):
 aad_len = encode_big_endian(len(aad), 8)
 ct_len = encode_big_endian(len(ct), 8)
 tag_len = encode_big_endian(Nt, 8)
 auth_data = aad_len + ct_len + tag_len + nonce + aad + ct
 tag = HMAC(auth_key, auth_data)
 return truncate(tag, Nt)

def AEAD.Encrypt(key, nonce, aad, pt):
 enc_key, auth_key = derive_subkeys(key)
 initial_counter = nonce + 0x00000000 # append four zero bytes
 ct = AES-CTR.Encrypt(enc_key, initial_counter, pt)
 tag = compute_tag(auth_key, nonce, aad, ct)
 return ct + tag

def AEAD.Decrypt(key, nonce, aad, ct):
 inner_ct, tag = split_ct(ct, tag_len)

 enc_key, auth_key = derive_subkeys(key)
 candidate_tag = compute_tag(auth_key, nonce, aad, inner_ct)
 if !constant_time_equal(tag, candidate_tag):
 raise Exception("Authentication Failure")

 initial_counter = nonce + 0x00000000 # append four zero bytes
 return AES-CTR.Decrypt(enc_key, initial_counter, inner_ct)

5. Key Management

SFrame must be integrated with an E2E key management framework to exchange and rotate the

keys used for SFrame encryption. The key management framework provides the following

functions:

Provisioning KID / base_key mappings to participating clients

Updating the above data as clients join or leave

It is the responsibility of the application to provide the key management framework, as

described in Section 9.2.

•

•

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 16

5.1. Sender Keys

If the participants in a call have a preexisting E2E-secure channel, they can use it to distribute

SFrame keys. Each client participating in a call generates a fresh base_key value that it will use

to encrypt media. The client then uses the E2E-secure channel to send their encryption key to the

other participants.

In this scheme, it is assumed that receivers have a signal outside of SFrame for which client has

sent a given frame (e.g., an RTP synchronization source (SSRC)). SFrame KID values are then used

to distinguish between versions of the sender's base_key.

Key IDs in this scheme have two parts: a "key generation" and a "ratchet step". Both are unsigned

integers that begin at zero. The "key generation" increments each time the sender distributes a

new key to receivers. The "ratchet step" is incremented each time the sender ratchets their key

forward for forward secrecy:

For compactness, we do not send the whole ratchet step. Instead, we send only its low-order R

bits, where R is a value set by the application. Different senders may use different values of R, but

each receiver of a given sender needs to know what value of R is used by the sender so that they

can recognize when they need to ratchet (vs. expecting a new key). R effectively defines a

reordering window, since no more than 2
R
 ratchet steps can be active at a given time. The key

generation is sent in the remaining 64 - R bits of the Key ID.

The sender signals such a ratchet step update by sending with a KID value in which the ratchet

step has been incremented. A receiver who receives from a sender with a new KID computes the

new key as above. The old key may be kept for some time to allow for out-of-order delivery, but

should be deleted promptly.

base_key[i+1] = HKDF-Expand(
 HKDF-Extract("", base_key[i]),
 "SFrame 1.0 Ratchet", CipherSuite.Nh)

KID = (key_generation << R) + (ratchet_step % (1 << R))

Figure 6: Structure of a KID in the Sender Keys Scheme

64-R bits R bits

Key Generation Ratchet Step

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 17

If a new participant joins in the middle of a session, they will need to receive from each sender

(a) the current sender key for that sender and (b) the current KID value for the sender. Evicting a

participant requires each sender to send a fresh sender key to all receivers.

It is up to the application to decide when sender keys are updated. A sender key may be updated

by sending a new base_key (updating the key generation) or by hashing the current base_key

(updating the ratchet step). Ratcheting the key forward is useful when adding new receivers to

an SFrame-based interaction, since it ensures that the new receivers can't decrypt any media

encrypted before they were added. If a sender wishes to assure the opposite property when

removing a receiver (i.e., ensuring that the receiver can't decrypt media after they are removed),

then the sender will need to distribute a new sender key.

5.2. MLS

The Messaging Layer Security (MLS) protocol provides group authenticated key exchange

 . In principle, it could be used to instantiate the sender key scheme above,

but it can also be used more efficiently directly.

MLS creates a linear sequence of keys, each of which is shared among the members of a group at

a given point in time. When a member joins or leaves the group, a new key is produced that is

known only to the augmented or reduced group. Each step in the lifetime of the group is known

as an "epoch", and each member of the group is assigned an "index" that is constant for the time

they are in the group.

To generate keys and nonces for SFrame, we use the MLS exporter function to generate a

base_key value for each MLS epoch. Each member of the group is assigned a set of KID values so

that each member has a unique sframe_key and sframe_salt that it uses to encrypt with.

Senders may choose any KID value within their assigned set of KID values, e.g., to allow a single

sender to send multiple, uncoordinated outbound media streams.

For compactness, we do not send the whole epoch number. Instead, we send only its low-order E

bits, where E is a value set by the application. E effectively defines a reordering window, since no

more than 2
E
 epochs can be active at a given time. Receivers be prepared for the epoch

counter to roll over, removing an old epoch when a new epoch with the same E lower bits is

introduced.

Let S be the number of bits required to encode a member index in the group, i.e., the smallest

value such that group_size <= (1 << S). The sender index is encoded in the S bits above the

epoch. The remaining 64 - S - E bits of the KID value are a context value chosen by the

sender (context value 0 will produce the shortest encoded KID).

[MLS-

ARCH] [MLS-PROTO]

base_key = MLS-Exporter("SFrame 1.0 Base Key", "", AEAD.Nk)

MUST

KID = (context << (S + E)) + (sender_index << E) + (epoch % (1 << E))

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 18

Once an SFrame stack has been provisioned with the sframe_epoch_secret for an epoch, it can

compute the required KID values on demand (as well as the resulting SFrame keys/nonces

derived from the base_key and KID) as it needs to encrypt or decrypt for a given member.

Figure 7: Structure of a KID for an MLS Sender

64-S-E bits S bits E bits

Context ID Index Epoch

Figure 8: An Example Sequence of KIDs for an MLS-based SFrame Session (E=4; S=6, Allowing for 64

Group Members)

...

Epoch 14 index=3 KID = 0x3e

index=7 KID = 0x7e

index=20 KID = 0x14e

Epoch 15 index=3 KID = 0x3f

index=5 KID = 0x5f

Epoch 16 index=2 context = 2 KID = 0x820

context = 3 KID = 0xc20

Epoch 17 index=33 KID = 0x211

index=51 KID = 0x331

...

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 19

6. Media Considerations

6.1. Selective Forwarding Units

SFUs (e.g., those described in) receive the media streams from each

participant and select which ones should be forwarded to each of the other participants. There

are several approaches for stream selection, but in general, the SFU needs to access metadata

associated with each frame and modify the RTP information of the incoming packets when they

are transmitted to the received participants.

This section describes how these normal SFU modes of operation interact with the E2EE provided

by SFrame.

Section 3.7 of [RFC7667]

6.1.1. LastN and RTP Stream Reuse

The SFU may choose to send only a certain number of streams based on the voice activity of the

participants. To avoid the overhead involved in establishing new transport streams, the SFU may

decide to reuse previously existing streams or even pre-allocate a predefined number of streams

and choose in each moment in time which participant media will be sent through it.

This means that in the same transport-level stream (e.g., an RTP stream defined by either SSRC or

Media Identification (MID)) may carry media from different streams of different participants. As

different keys are used by each participant for encoding their media, the receiver will be able to

verify which is the sender of the media coming within the RTP stream at any given point in time,

preventing the SFU trying to impersonate any of the participants with another participant's

media.

Note that in order to prevent impersonation by a malicious participant (not the SFU), a

mechanism based on digital signature would be required. SFrame does not protect against such

attacks.

6.1.2. Simulcast

When using simulcast, the same input image will produce N different encoded frames (one per

simulcast layer), which would be processed independently by the frame encryptor and assigned

an unique counter for each.

6.1.3. SVC

In both temporal and spatial scalability, the SFU may choose to drop layers in order to match a

certain bitrate or to forward specific media sizes or frames per second. In order to support the

SFU selectively removing layers, the sender encapsulate each layer in a different SFrame

ciphertext.

MUST

6.2. Video Key Frames

Forward security and post-compromise security require that the E2EE keys (base keys) are

updated any time a participant joins or leaves the call.

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 20

https://www.rfc-editor.org/rfc/rfc7667#section-3.7

The key exchange happens asynchronously and on a different path than the SFU signaling and

media. So it may happen that, when a new participant joins the call and the SFU side requests a

key frame, the sender generates the E2EE frame with a key that is not known by the receiver, so

it will be discarded. When the sender updates his sending key with the new key, it will send it in

a non-key frame, so the receiver will be able to decrypt it, but not decode it.

The new receiver will then re-request a key frame, but due to sender and SFU policies, that new

key frame could take some time to be generated.

If the sender sends a key frame after the new E2EE key is in use, the time required for the new

participant to display the video is minimized.

Note that this issue does not arise for media streams that do not have dependencies among

frames, e.g., audio streams. In these streams, each frame is independently decodable, so there is

never a need to process together two frames that might be on two sides of a key rotation.

6.3. Partial Decoding

Some codecs support partial decoding, where individual packets can be decoded without waiting

for the full frame to arrive. When SFrame is applied per frame, partial decoding is not possible

because the decoder cannot access data until an entire frame has arrived and has been

decrypted.

7. Security Considerations

7.1. No Header Confidentiality

SFrame provides integrity protection to the SFrame header (the Key ID and counter values), but

it does not provide confidentiality protection. Parties that can observe the SFrame header may

learn, for example, which parties are sending SFrame payloads (from KID values) and at what

rates (from CTR values). In cases where SFrame is used for end-to-end security on top of hop-by-

hop protections (e.g., running over SRTP as described in Appendix B.5), the hop-by-hop security

mechanisms provide confidentiality protection of the SFrame header between hops.

7.2. No per-Sender Authentication

SFrame does not provide per-sender authentication of media data. Any sender in a session can

send media that will be associated with any other sender. This is because SFrame uses symmetric

encryption to protect media data, so that any receiver also has the keys required to encrypt

packets for the sender.

7.3. Key Management

The key exchange mechanism is out of scope of this document; however, every client

change their keys when new clients join or leave the call for forward secrecy and post-

compromise security.

SHOULD

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 21

7.4. Replay

The handling of replay is out of the scope of this document. However, senders reject

requests to encrypt multiple times with the same key and nonce since several AEAD algorithms

fail badly in such cases (see, e.g.,).

MUST

Section 5.1.1 of [RFC5116]

7.5. Risks Due to Short Tags

The SFrame cipher suites based on AES-CTR allow for the use of short authentication tags, which

bring a higher risk that an attacker will be able to cause an SFrame receiver to accept an SFrame

ciphertext of the attacker's choosing.

Assuming that the authentication properties of the cipher suite are robust, the only attack that an

attacker can mount is an attempt to find an acceptable (ciphertext, tag) combination through

brute force. Such a brute-force attack will have an expected success rate of the following form:

attacker_success_rate = attempts_per_second / 2^(8*Nt)

For example, a gigabit Ethernet connection is able to transmit roughly 2
20

 packets per second. If

an attacker saturated such a link with guesses against a 32-bit authentication tag (Nt=4), then the

attacker would succeed on average roughly once every 2
12

 seconds, or about once an hour.

In a typical SFrame usage in a real-time media application, there are a few approaches to

mitigating this risk:

Receivers only accept SFrame ciphertexts over HBH-secure channels (e.g., SRTP security

associations or QUIC connections). If this is the case, only an entity that is part of such a

channel can mount the above attack.

The expected packet rate for a media stream is very predictable (and typically far lower than

the above example). On the one hand, attacks at this rate will succeed even less often than

the high-rate attack described above. On the other hand, the application may use an elevated

packet-arrival rate as a signal of a brute-force attack. This latter approach is common in

other settings, e.g., mitigating brute-force attacks on passwords.

Media applications typically do not provide feedback to media senders as to which media

packets failed to decrypt. When media-quality feedback mechanisms are used, decryption

failures will typically appear as packet losses, but only at an aggregate level.

Anti-replay mechanisms (see Section 7.4) prevent the attacker from reusing valid ciphertexts

(either observed or guessed by the attacker). A receiver applying anti-replay controls will

only accept one valid plaintext per CTR value. Since the CTR value is covered by SFrame

authentication, an attacker has to do a fresh search for a valid tag for every forged

ciphertext, even if the encrypted content is unchanged. In other words, when the above

brute-force attack succeeds, it only allows the attacker to send a single SFrame ciphertext;

the ciphertext cannot be reused because either it will have the same CTR value and be

discarded as a replay, or else it will have a different CTR value and its tag will no longer be

valid.

•

•

•

•

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 22

https://www.rfc-editor.org/rfc/rfc5116#section-5.1.1

Nonetheless, without these mitigations, an application that makes use of short tags will be at

heightened risk of forgery attacks. In many cases, it is simpler to use full-size tags and tolerate

slightly higher-bandwidth usage rather than to add the additional defenses necessary to safely

use short tags.

8. IANA Considerations

IANA has created a new registry called "SFrame Cipher Suites" (Section 8.1) under the "SFrame"

group registry heading. Assignments are made via the Specification Required policy .[RFC8126]

8.1. SFrame Cipher Suites

The "SFrame Cipher Suites" registry lists identifiers for SFrame cipher suites as defined in Section

4.5. The cipher suite field is two bytes wide, so the valid cipher suites are in the range 0x0000 to

0xFFFF.

The registration template is as follows:

Value: The numeric value of the cipher suite

Name: The name of the cipher suite

Recommended: Whether support for this cipher suite is recommended by the IETF. Valid

values are "Y", "N", and "D" as described in . The default value of

the "Recommended" column is "N". Setting the Recommended item to "Y" or "D", or changing

an item whose current value is "Y" or "D", requires Standards Action .

Reference: The document where this cipher suite is defined

Change Controller: Who is authorized to update the row in the registry

Initial contents:

•

•

•

Section 17.1 of [MLS-PROTO]

[RFC8126]

•

•

Value Name R Reference Change Controller

0x0000 Reserved - RFC 9605 IETF

0x0001 AES_128_CTR_HMAC_SHA256_80 Y RFC 9605 IETF

0x0002 AES_128_CTR_HMAC_SHA256_64 Y RFC 9605 IETF

0x0003 AES_128_CTR_HMAC_SHA256_32 Y RFC 9605 IETF

0x0004 AES_128_GCM_SHA256_128 Y RFC 9605 IETF

0x0005 AES_256_GCM_SHA512_128 Y RFC 9605 IETF

0xF000 - 0xFFFF Reserved for Private Use - RFC 9605 IETF

Table 2: SFrame Cipher Suites

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 23

https://www.rfc-editor.org/rfc/rfc9420#section-17.1

9. Application Responsibilities

To use SFrame, an application needs to define the inputs to the SFrame encryption and

decryption operations, and how SFrame ciphertexts are delivered from sender to receiver

(including any fragmentation and reassembly). In this section, we lay out additional

requirements that an implementation must meet in order for SFrame to operate securely.

In general, an application using SFrame is responsible for configuring SFrame. The application

must first define when SFrame is applied at all. When SFrame is applied, the application must

define which cipher suite is to be used. If new versions of SFrame are defined in the future, it will

be up to the application to determine which version should be used.

This division of responsibilities is similar to the way other media parameters (e.g., codecs) are

typically handled in media applications, in the sense that they are set up in some signaling

protocol and not described in the media. Applications might find it useful to extend the protocols

used for negotiating other media parameters (e.g., Session Description Protocol (SDP))

to also negotiate parameters for SFrame.

[RFC8866]

9.1. Header Value Uniqueness

Applications ensure that each (base_key, KID, CTR) combination is used for at most one

SFrame encryption operation. This ensures that the (key, nonce) pairs used by the underlying

AEAD algorithm are never reused. Typically this is done by assigning each sender a KID or set of

KIDs, then having each sender use the CTR field as a monotonic counter, incrementing for each

plaintext that is encrypted. In addition to its simplicity, this scheme minimizes overhead by

keeping CTR values as small as possible.

In applications where an SFrame context might be written to persistent storage, this context

needs to include the last-used CTR value. When the context is used later, the application should

use the stored CTR value to determine the next CTR value to be used in an encryption operation,

and then write the next CTR value back to storage before using the CTR value for encryption.

Storing the CTR value before usage (vs. after) helps ensure that a storage failure will not cause

reuse of the same (base_key, KID, CTR) combination.

MUST

9.2. Key Management Framework

It is up to the application to provision SFrame with a mapping of KID values to base_key values

and the resulting keys and salts. More importantly, the application specifies which KID values are

used for which purposes (e.g., by which senders). An application's KID assignment strategy

be structured to assure the non-reuse properties discussed in Section 9.1.

It is also up to the application to define a rotation schedule for keys. For example, one application

might have an ephemeral group for every call and keep rotating keys when endpoints join or

leave the call, while another application could have a persistent group that can be used for

multiple calls and simply derives ephemeral symmetric keys for a specific call.

MUST

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 24

10. References

It should be noted that KID values are not encrypted by SFrame and are thus visible to any

application-layer intermediaries that might handle an SFrame ciphertext. If there are application

semantics included in KID values, then this information would be exposed to intermediaries. For

example, in the scheme of Section 5.1, the number of ratchet steps per sender is exposed, and in

the scheme of Section 5.2, the number of epochs and the MLS sender ID of the SFrame sender are

exposed.

9.3. Anti-Replay

It is the responsibility of the application to handle anti-replay. Replay by network attackers is

assumed to be prevented by network-layer facilities (e.g., TLS, SRTP). As mentioned in Section 7.4,

senders reject requests to encrypt multiple times with the same key and nonce.

It is not mandatory to implement anti-replay on the receiver side. Receivers apply time- or

counter-based anti-replay mitigations. For example, specifies a

counter-based anti-replay mitigation, which could be adapted to use with SFrame, using the CTR

field as the counter.

MUST

MAY

Section 3.3.2 of [RFC3711]

9.4. Metadata

The metadata input to SFrame operations is pure application-specified data. As such, it is up to

the application to define what information should go in the metadata input and ensure that it is

provided to the encryption and decryption functions at the appropriate points. A receiver

 use SFrame-authenticated metadata until after the SFrame decrypt function has

authenticated it, unless the purpose of such usage is to prepare an SFrame ciphertext for SFrame

decryption. Essentially, metadata may be used "upstream of SFrame" in a processing pipeline, but

only to prepare for SFrame decryption.

For example, consider an application where SFrame is used to encrypt audio frames that are sent

over SRTP, with some application data included in the RTP header extension. Suppose the

application also includes this application data in the SFrame metadata, so that the SFU is allowed

to read, but not modify, the application data. A receiver can use the application data in the RTP

header extension as part of the standard SRTP decryption process since this is required to

recover the SFrame ciphertext carried in the SRTP payload. However, the receiver use

the application data for other purposes before SFrame decryption has authenticated the

application data.

MUST

NOT

MUST NOT

[MLS-PROTO]

10.1. Normative References

, , , , , and

, , ,

, July 2023, .

Barnes, R. Beurdouche, B. Robert, R. Millican, J. Omara, E. K. Cohn-

Gordon "The Messaging Layer Security (MLS) Protocol" RFC 9420 DOI 10.17487/

RFC9420 <https://www.rfc-editor.org/rfc/rfc9420>

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 25

https://www.rfc-editor.org/rfc/rfc3711#section-3.3.2
https://www.rfc-editor.org/rfc/rfc9420

[RFC2119]

[RFC5116]

[RFC5869]

[RFC8126]

[RFC8174]

, , ,

, , March 1997,

.

, ,

, , January 2008,

.

 and ,

, , , May 2010,

.

, , and ,

, , , , June

2017, .

, ,

, , , May 2017,

.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/rfc/

rfc2119>

McGrew, D. "An Interface and Algorithms for Authenticated Encryption" RFC

5116 DOI 10.17487/RFC5116 <https://www.rfc-editor.org/rfc/

rfc5116>

Krawczyk, H. P. Eronen "HMAC-based Extract-and-Expand Key Derivation

Function (HKDF)" RFC 5869 DOI 10.17487/RFC5869 <https://www.rfc-

editor.org/rfc/rfc5869>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/rfc/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/rfc/

rfc8174>

[I-D.codec-agnostic-rtp-payload-format]

[I-D.ietf-moq-transport]

[I-D.ietf-webtrans-overview]

[MLS-ARCH]

[RFC3711]

[RFC6716]

10.2. Informative References

 and ,

, ,

, 19 February 2021,

.

, , , , and ,

, ,

, 29 May 2024,

.

, ,

, , 4 March 2024,

.

, , , , and ,

, ,

, 22 March 2024,

.

, , , , and ,

, , , March

2004, .

, , and , ,

, , September 2012,

.

Murillo, S. G. A. Gouaillard "Codec agnostic RTP

payload format for video" Work in Progress Internet-Draft, draft-codec-

agnostic-rtp-payload-format-00 <https://datatracker.ietf.org/

doc/html/draft-codec-agnostic-rtp-payload-format-00>

Curley, L. Pugin, K. Nandakumar, S. Vasiliev, V. I. Swett "Media

over QUIC Transport" Work in Progress Internet-Draft, draft-ietf-moq-

transport-04 <https://datatracker.ietf.org/doc/html/draft-ietf-moq-

transport-04>

Vasiliev, V. "The WebTransport Protocol Framework" Work in

Progress Internet-Draft, draft-ietf-webtrans-overview-07 <https://

datatracker.ietf.org/doc/html/draft-ietf-webtrans-overview-07>

Beurdouche, B. Rescorla, E. Omara, E. Inguva, S. A. Duric "The Messaging

Layer Security (MLS) Architecture" Work in Progress Internet-Draft, draft-ietf-

mls-architecture-13 <https://datatracker.ietf.org/doc/html/draft-

ietf-mls-architecture-13>

Baugher, M. McGrew, D. Naslund, M. Carrara, E. K. Norrman "The Secure

Real-time Transport Protocol (SRTP)" RFC 3711 DOI 10.17487/RFC3711

<https://www.rfc-editor.org/rfc/rfc3711>

Valin, JM. Vos, K. T. Terriberry "Definition of the Opus Audio Codec" RFC

6716 DOI 10.17487/RFC6716 <https://www.rfc-editor.org/rfc/

rfc6716>

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 26

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc5116
https://www.rfc-editor.org/rfc/rfc5116
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/html/draft-codec-agnostic-rtp-payload-format-00
https://datatracker.ietf.org/doc/html/draft-codec-agnostic-rtp-payload-format-00
https://datatracker.ietf.org/doc/html/draft-ietf-moq-transport-04
https://datatracker.ietf.org/doc/html/draft-ietf-moq-transport-04
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-overview-07
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-overview-07
https://datatracker.ietf.org/doc/html/draft-ietf-mls-architecture-13
https://datatracker.ietf.org/doc/html/draft-ietf-mls-architecture-13
https://www.rfc-editor.org/rfc/rfc3711
https://www.rfc-editor.org/rfc/rfc6716
https://www.rfc-editor.org/rfc/rfc6716

[RFC7656]

[RFC7667]

[RFC8723]

[RFC8866]

[TestVectors]

, , , , and ,

, , , November 2015,

.

 and , , ,

, November 2015, .

, , , and ,

, ,

, April 2020, .

, , , and ,

, , , January 2021,

.

, , September 2023,

.

Lennox, J. Gross, K. Nandakumar, S. Salgueiro, G. B. Burman, Ed. "A

Taxonomy of Semantics and Mechanisms for Real-Time Transport Protocol

(RTP) Sources" RFC 7656 DOI 10.17487/RFC7656 <https://

www.rfc-editor.org/rfc/rfc7656>

Westerlund, M. S. Wenger "RTP Topologies" RFC 7667 DOI 10.17487/

RFC7667 <https://www.rfc-editor.org/rfc/rfc7667>

Jennings, C. Jones, P. Barnes, R. A.B. Roach "Double Encryption Procedures

for the Secure Real-Time Transport Protocol (SRTP)" RFC 8723 DOI 10.17487/

RFC8723 <https://www.rfc-editor.org/rfc/rfc8723>

Begen, A. Kyzivat, P. Perkins, C. M. Handley "SDP: Session Description

Protocol" RFC 8866 DOI 10.17487/RFC8866 <https://www.rfc-

editor.org/rfc/rfc8866>

"SFrame Test Vectors" commit 025d568 <https://github.com/

sframe-wg/sframe/blob/main/test-vectors/test-vectors.json>

Appendix A. Example API

This section is not normative.

This section describes a notional API that an SFrame implementation might expose. The core

concept is an "SFrame context", within which KID values are meaningful. In the key management

scheme described in Section 5.1, each sender has a different context; in the scheme described in

Section 5.2, all senders share the same context.

An SFrame context stores mappings from KID values to "key contexts", which are different

depending on whether the KID is to be used for sending or receiving (an SFrame key should

never be used for both operations). A key context tracks the key and salt associated to the KID,

and the current CTR value. A key context to be used for sending also tracks the next CTR value to

be used.

The primary operations on an SFrame context are as follows:

Create an SFrame context: The context is initialized with a cipher suite and no KID

mappings.

Add a key for sending: The key and salt are derived from the base key, and are used to

initialize a send context, together with a zero counter value.

Add a key for receiving: The key and salt are derived from the base key, and are used to

initialize a send context.

Encrypt a plaintext: Encrypt a given plaintext using the key for a given KID, including the

specified metadata.

Decrypt an SFrame ciphertext: Decrypt an SFrame ciphertext with the KID and CTR values

specified in the SFrame header, and the provided metadata.

•

•

•

•

•

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 27

https://www.rfc-editor.org/rfc/rfc7656
https://www.rfc-editor.org/rfc/rfc7656
https://www.rfc-editor.org/rfc/rfc7667
https://www.rfc-editor.org/rfc/rfc8723
https://www.rfc-editor.org/rfc/rfc8866
https://www.rfc-editor.org/rfc/rfc8866
https://github.com/sframe-wg/sframe/blob/main/test-vectors/test-vectors.json
https://github.com/sframe-wg/sframe/blob/main/test-vectors/test-vectors.json

Figure 9 shows an example of the types of structures and methods that could be used to create an

SFrame API in Rust.

Figure 9: An Example SFrame API

type KeyId = u64;
type Counter = u64;
type CipherSuite = u16;

struct SendKeyContext {
 key: Vec<u8>,
 salt: Vec<u8>,
 next_counter: Counter,
}

struct RecvKeyContext {
 key: Vec<u8>,
 salt: Vec<u8>,
}

struct SFrameContext {
 cipher_suite: CipherSuite,
 send_keys: HashMap<KeyId, SendKeyContext>,
 recv_keys: HashMap<KeyId, RecvKeyContext>,
}

trait SFrameContextMethods {
 fn create(cipher_suite: CipherSuite) -> Self;
 fn add_send_key(&self, kid: KeyId, base_key: &[u8]);
 fn add_recv_key(&self, kid: KeyId, base_key: &[u8]);
 fn encrypt(&mut self, kid: KeyId, metadata: &[u8],
 plaintext: &[u8]) -> Vec<u8>;
 fn decrypt(&self, metadata: &[u8], ciphertext: &[u8]) -> Vec<u8>;
}

Appendix B. Overhead Analysis

Any use of SFrame will impose overhead in terms of the amount of bandwidth necessary to

transmit a given media stream. Exactly how much overhead will be added depends on several

factors:

The number of senders involved in a conference (length of KID)

The duration of the conference (length of CTR)

The cipher suite in use (length of authentication tag)

Whether SFrame is used to encrypt packets, whole frames, or some other unit

Overall, the overhead rate in kilobits per second can be estimated as:

OverheadKbps = (1 + |CTR| + |KID| + |TAG|) * 8 * CTPerSecond / 1024

•

•

•

•

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 28

Here the constant value 1 reflects the fixed SFrame header; |CTR| and |KID| reflect the lengths

of those fields; |TAG| reflects the cipher overhead; and CTPerSecond reflects the number of

SFrame ciphertexts sent per second (e.g., packets or frames per second).

In the remainder of this section, we compute overhead estimates for a collection of common

scenarios.

B.1. Assumptions

In the below calculations, we make conservative assumptions about SFrame overhead so that the

overhead amounts we compute here are likely to be an upper bound of those seen in practice.

In total, then, we assume that each SFrame encryption will add 22 bytes of overhead.

We consider two scenarios: applying SFrame per frame and per packet. In each scenario, we

compute the SFrame overhead in absolute terms (kbps) and as a percentage of the base

bandwidth.

Field Bytes Explanation

Fixed header 1 Fixed

Key ID (KID) 2 >255 senders; or MLS epoch (E=4) and >16 senders

Counter (CTR) 3 More than 24 hours of media in common cases

Cipher overhead 16 Full Galois/Counter Mode (GCM) tag (longest defined here)

Table 3: Overhead Analysis Assumptions

B.2. Audio

In audio streams, there is typically a one-to-one relationship between frames and packets, so the

overhead is the same whether one uses SFrame at a per-packet or per-frame level.

Table 4 considers three scenarios that are based on recommended configurations of the Opus

codec :

Narrow-band (NB) speech: 120 ms packets, 8 kbps

Full-band (FB) speech: 20 ms packets, 32 kbps

Full-band stereo music: 10 ms packets, 128 kbps

[RFC6716]

•

•

•

Scenario Frames per Second

(fps)

Base

kbps

Overhead

kbps

Overhead

%

NB speech, 120 ms

packets

8.3 8 1.4 17.9%

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 29

Scenario Frames per Second

(fps)

Base

kbps

Overhead

kbps

Overhead

%

FB speech, 20 ms

packets

50 32 8.6 26.9%

FB stereo, 10 ms

packets

100 128 17.2 13.4%

Table 4: SFrame Overhead for Audio Streams

B.3. Video

Video frames can be larger than an MTU and thus are commonly split across multiple frames.

Table 5 and Table 6 show the estimated overhead of encrypting a video stream, where SFrame is

applied per frame and per packet, respectively. The choices of resolution, frames per second, and

bandwidth roughly reflect the capabilities of modern video codecs across a range from very-low

to very-high quality.

Scenario fps Base kbps Overhead kbps Overhead %

426 x 240 7.5 45 1.3 2.9%

640 x 360 15 200 2.6 1.3%

640 x 360 30 400 5.2 1.3%

1280 x 720 30 1500 5.2 0.3%

1920 x 1080 60 7200 10.3 0.1%

Table 5: SFrame Overhead for a Video Stream Encrypted per Frame

Scenario fps Packets per Second

(pps)

Base

kbps

Overhead

kbps

Overhead

%

426 x 240 7.5 7.5 45 1.3 2.9%

640 x 360 15 30 200 5.2 2.6%

640 x 360 30 60 400 10.3 2.6%

1280 x 720 30 180 1500 30.9 2.1%

1920 x

1080

60 780 7200 134.1 1.9%

Table 6: SFrame Overhead for a Video Stream Encrypted per Packet

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 30

In the per-frame case, the SFrame percentage overhead approaches zero as the quality of the

video improves since bandwidth is driven more by picture size than frame rate. In the per-packet

case, the SFrame percentage overhead approaches the ratio between the SFrame overhead per

packet and the MTU (here 22 bytes of SFrame overhead divided by an assumed 1200-byte MTU,

or about 1.8%).

B.4. Conferences

Real conferences usually involve several audio and video streams. The overhead of SFrame in

such a conference is the aggregate of the overhead of all the individual streams. Thus, while

SFrame incurs a large percentage overhead on an audio stream, if the conference also involves a

video stream, then the audio overhead is likely negligible relative to the overall bandwidth of the

conference.

For example, Table 7 shows the overhead estimates for a two-person conference where one

person is sending low-quality media and the other is sending high-quality media. (And we

assume that SFrame is applied per frame.) The video streams dominate the bandwidth at the

SFU, so the total bandwidth overhead is only around 1%.

Stream Base Kbps Overhead Kbps Overhead %

Participant 1 audio 8 1.4 17.9%

Participant 1 video 45 1.3 2.9%

Participant 2 audio 32 9 26.9%

Participant 2 video 1500 5 0.3%

Total at SFU 1585 16.5 1.0%

Table 7: SFrame Overhead for a Two-Person Conference

B.5. SFrame over RTP

SFrame is a generic encapsulation format, but many of the applications in which it is likely to be

integrated are based on RTP. This section discusses how an integration between SFrame and RTP

could be done, and some of the challenges that would need to be overcome.

As discussed in Section 4.1, there are two natural patterns for integrating SFrame into an

application: applying SFrame per frame or per packet. In RTP-based applications, applying

SFrame per packet means that the payload of each RTP packet will be an SFrame ciphertext,

starting with an SFrame header, as shown in Figure 10. Applying SFrame per frame means that

different RTP payloads will have different formats: the first payload of a frame will contain the

SFrame headers, and subsequent payloads will contain further chunks of the ciphertext, as

shown in Figure 11.

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 31

In order for these media payloads to be properly interpreted by receivers, receivers will need to

be configured to know which of the above schemes the sender has applied to a given sequence of

RTP packets. SFrame does not provide a mechanism for distributing this configuration

information. In applications that use SDP for negotiating RTP media streams , an

appropriate extension to SDP could provide this function.

Applying SFrame per frame also requires that packetization and depacketization be done in a

generic manner that does not depend on the media content of the packets, since the content

being packetized/depacketized will be opaque ciphertext (except for the SFrame header). In

order for such a generic packetization scheme to work interoperably, one would have to be

defined, e.g., as proposed in .

[RFC8866]

[I-D.codec-agnostic-rtp-payload-format]

Figure 10: SRTP Packet with SFrame-Protected Payload

V=2 P X CC M PT sequence number

timestamp

synchronization source (SSRC) identifier

contributing source (CSRC) identifiers

....

RTP extension(s) (OPTIONAL)

SFrame header

SFrame encrypted and authenticated payload

SRTP authentication tag

SRTP Encrypted Portion SRTP Authenticated Portion

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 32

Figure 11: Encryption Flow with per-Frame Encryption for RTP

frame metadata

frame

SFrame Encrypt

encrypted

frame

generic RTP packetize

...

SFrame header

payload 2/N ... payload N/N

payload 1/N

Appendix C. Test Vectors

This section provides a set of test vectors that implementations can use to verify that they

correctly implement SFrame encryption and decryption. In addition to test vectors for the overall

process of SFrame encryption/decryption, we also provide test vectors for header encoding/

decoding, and for AEAD encryption/decryption using the AES-CTR construction defined in

Section 4.5.1.

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 33

All values are either numeric or byte strings. Numeric values are represented as hex values,

prefixed with 0x. Byte strings are represented in hex encoding.

Line breaks and whitespace within values are inserted to conform to the width requirements of

the RFC format. They should be removed before use.

These test vectors are also available in JSON format at . In the JSON test vectors,

numeric values are JSON numbers and byte string values are JSON strings containing the hex

encoding of the byte strings.

[TestVectors]

C.1. Header Encoding/Decoding

For each case, we provide:

kid: A KID value

ctr: A CTR value

header: An encoded SFrame header

An implementation should verify that:

Encoding a header with the KID and CTR results in the provided header value

Decoding the provided header value results in the provided KID and CTR values

•

•

•

•

•

kid: 0x0000000000000000
ctr: 0x0000000000000000
header: 00

kid: 0x0000000000000000
ctr: 0x0000000000000001
header: 01

kid: 0x0000000000000000
ctr: 0x00000000000000ff
header: 08ff

kid: 0x0000000000000000
ctr: 0x0000000000000100
header: 090100

kid: 0x0000000000000000
ctr: 0x000000000000ffff
header: 09ffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 34

kid: 0x0000000000000000
ctr: 0x0000000000010000
header: 0a010000

kid: 0x0000000000000000
ctr: 0x0000000000ffffff
header: 0affffff

kid: 0x0000000000000000
ctr: 0x0000000001000000
header: 0b01000000

kid: 0x0000000000000000
ctr: 0x00000000ffffffff
header: 0bffffffff

kid: 0x0000000000000000
ctr: 0x0000000100000000
header: 0c0100000000

kid: 0x0000000000000000
ctr: 0x000000ffffffffff
header: 0cffffffffff

kid: 0x0000000000000000
ctr: 0x0000010000000000
header: 0d010000000000

kid: 0x0000000000000000
ctr: 0x0000ffffffffffff
header: 0dffffffffffff

kid: 0x0000000000000000
ctr: 0x0001000000000000
header: 0e01000000000000

kid: 0x0000000000000000
ctr: 0x00ffffffffffffff
header: 0effffffffffffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 35

kid: 0x0000000000000000
ctr: 0x0100000000000000
header: 0f0100000000000000

kid: 0x0000000000000000
ctr: 0xffffffffffffffff
header: 0fffffffffffffffff

kid: 0x0000000000000001
ctr: 0x0000000000000000
header: 10

kid: 0x0000000000000001
ctr: 0x0000000000000001
header: 11

kid: 0x0000000000000001
ctr: 0x00000000000000ff
header: 18ff

kid: 0x0000000000000001
ctr: 0x0000000000000100
header: 190100

kid: 0x0000000000000001
ctr: 0x000000000000ffff
header: 19ffff

kid: 0x0000000000000001
ctr: 0x0000000000010000
header: 1a010000

kid: 0x0000000000000001
ctr: 0x0000000000ffffff
header: 1affffff

kid: 0x0000000000000001
ctr: 0x0000000001000000
header: 1b01000000

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 36

kid: 0x0000000000000001
ctr: 0x00000000ffffffff
header: 1bffffffff

kid: 0x0000000000000001
ctr: 0x0000000100000000
header: 1c0100000000

kid: 0x0000000000000001
ctr: 0x000000ffffffffff
header: 1cffffffffff

kid: 0x0000000000000001
ctr: 0x0000010000000000
header: 1d010000000000

kid: 0x0000000000000001
ctr: 0x0000ffffffffffff
header: 1dffffffffffff

kid: 0x0000000000000001
ctr: 0x0001000000000000
header: 1e01000000000000

kid: 0x0000000000000001
ctr: 0x00ffffffffffffff
header: 1effffffffffffff

kid: 0x0000000000000001
ctr: 0x0100000000000000
header: 1f0100000000000000

kid: 0x0000000000000001
ctr: 0xffffffffffffffff
header: 1fffffffffffffffff

kid: 0x00000000000000ff
ctr: 0x0000000000000000
header: 80ff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 37

kid: 0x00000000000000ff
ctr: 0x0000000000000001
header: 81ff

kid: 0x00000000000000ff
ctr: 0x00000000000000ff
header: 88ffff

kid: 0x00000000000000ff
ctr: 0x0000000000000100
header: 89ff0100

kid: 0x00000000000000ff
ctr: 0x000000000000ffff
header: 89ffffff

kid: 0x00000000000000ff
ctr: 0x0000000000010000
header: 8aff010000

kid: 0x00000000000000ff
ctr: 0x0000000000ffffff
header: 8affffffff

kid: 0x00000000000000ff
ctr: 0x0000000001000000
header: 8bff01000000

kid: 0x00000000000000ff
ctr: 0x00000000ffffffff
header: 8bffffffffff

kid: 0x00000000000000ff
ctr: 0x0000000100000000
header: 8cff0100000000

kid: 0x00000000000000ff
ctr: 0x000000ffffffffff
header: 8cffffffffffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 38

kid: 0x00000000000000ff
ctr: 0x0000010000000000
header: 8dff010000000000

kid: 0x00000000000000ff
ctr: 0x0000ffffffffffff
header: 8dffffffffffffff

kid: 0x00000000000000ff
ctr: 0x0001000000000000
header: 8eff01000000000000

kid: 0x00000000000000ff
ctr: 0x00ffffffffffffff
header: 8effffffffffffffff

kid: 0x00000000000000ff
ctr: 0x0100000000000000
header: 8fff0100000000000000

kid: 0x00000000000000ff
ctr: 0xffffffffffffffff
header: 8fffffffffffffffffff

kid: 0x0000000000000100
ctr: 0x0000000000000000
header: 900100

kid: 0x0000000000000100
ctr: 0x0000000000000001
header: 910100

kid: 0x0000000000000100
ctr: 0x00000000000000ff
header: 980100ff

kid: 0x0000000000000100
ctr: 0x0000000000000100
header: 9901000100

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 39

kid: 0x0000000000000100
ctr: 0x000000000000ffff
header: 990100ffff

kid: 0x0000000000000100
ctr: 0x0000000000010000
header: 9a0100010000

kid: 0x0000000000000100
ctr: 0x0000000000ffffff
header: 9a0100ffffff

kid: 0x0000000000000100
ctr: 0x0000000001000000
header: 9b010001000000

kid: 0x0000000000000100
ctr: 0x00000000ffffffff
header: 9b0100ffffffff

kid: 0x0000000000000100
ctr: 0x0000000100000000
header: 9c01000100000000

kid: 0x0000000000000100
ctr: 0x000000ffffffffff
header: 9c0100ffffffffff

kid: 0x0000000000000100
ctr: 0x0000010000000000
header: 9d0100010000000000

kid: 0x0000000000000100
ctr: 0x0000ffffffffffff
header: 9d0100ffffffffffff

kid: 0x0000000000000100
ctr: 0x0001000000000000
header: 9e010001000000000000

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 40

kid: 0x0000000000000100
ctr: 0x00ffffffffffffff
header: 9e0100ffffffffffffff

kid: 0x0000000000000100
ctr: 0x0100000000000000
header: 9f01000100000000000000

kid: 0x0000000000000100
ctr: 0xffffffffffffffff
header: 9f0100ffffffffffffffff

kid: 0x000000000000ffff
ctr: 0x0000000000000000
header: 90ffff

kid: 0x000000000000ffff
ctr: 0x0000000000000001
header: 91ffff

kid: 0x000000000000ffff
ctr: 0x00000000000000ff
header: 98ffffff

kid: 0x000000000000ffff
ctr: 0x0000000000000100
header: 99ffff0100

kid: 0x000000000000ffff
ctr: 0x000000000000ffff
header: 99ffffffff

kid: 0x000000000000ffff
ctr: 0x0000000000010000
header: 9affff010000

kid: 0x000000000000ffff
ctr: 0x0000000000ffffff
header: 9affffffffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 41

kid: 0x000000000000ffff
ctr: 0x0000000001000000
header: 9bffff01000000

kid: 0x000000000000ffff
ctr: 0x00000000ffffffff
header: 9bffffffffffff

kid: 0x000000000000ffff
ctr: 0x0000000100000000
header: 9cffff0100000000

kid: 0x000000000000ffff
ctr: 0x000000ffffffffff
header: 9cffffffffffffff

kid: 0x000000000000ffff
ctr: 0x0000010000000000
header: 9dffff010000000000

kid: 0x000000000000ffff
ctr: 0x0000ffffffffffff
header: 9dffffffffffffffff

kid: 0x000000000000ffff
ctr: 0x0001000000000000
header: 9effff01000000000000

kid: 0x000000000000ffff
ctr: 0x00ffffffffffffff
header: 9effffffffffffffffff

kid: 0x000000000000ffff
ctr: 0x0100000000000000
header: 9fffff0100000000000000

kid: 0x000000000000ffff
ctr: 0xffffffffffffffff
header: 9fffffffffffffffffffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 42

kid: 0x0000000000010000
ctr: 0x0000000000000000
header: a0010000

kid: 0x0000000000010000
ctr: 0x0000000000000001
header: a1010000

kid: 0x0000000000010000
ctr: 0x00000000000000ff
header: a8010000ff

kid: 0x0000000000010000
ctr: 0x0000000000000100
header: a90100000100

kid: 0x0000000000010000
ctr: 0x000000000000ffff
header: a9010000ffff

kid: 0x0000000000010000
ctr: 0x0000000000010000
header: aa010000010000

kid: 0x0000000000010000
ctr: 0x0000000000ffffff
header: aa010000ffffff

kid: 0x0000000000010000
ctr: 0x0000000001000000
header: ab01000001000000

kid: 0x0000000000010000
ctr: 0x00000000ffffffff
header: ab010000ffffffff

kid: 0x0000000000010000
ctr: 0x0000000100000000
header: ac0100000100000000

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 43

kid: 0x0000000000010000
ctr: 0x000000ffffffffff
header: ac010000ffffffffff

kid: 0x0000000000010000
ctr: 0x0000010000000000
header: ad010000010000000000

kid: 0x0000000000010000
ctr: 0x0000ffffffffffff
header: ad010000ffffffffffff

kid: 0x0000000000010000
ctr: 0x0001000000000000
header: ae01000001000000000000

kid: 0x0000000000010000
ctr: 0x00ffffffffffffff
header: ae010000ffffffffffffff

kid: 0x0000000000010000
ctr: 0x0100000000000000
header: af0100000100000000000000

kid: 0x0000000000010000
ctr: 0xffffffffffffffff
header: af010000ffffffffffffffff

kid: 0x0000000000ffffff
ctr: 0x0000000000000000
header: a0ffffff

kid: 0x0000000000ffffff
ctr: 0x0000000000000001
header: a1ffffff

kid: 0x0000000000ffffff
ctr: 0x00000000000000ff
header: a8ffffffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 44

kid: 0x0000000000ffffff
ctr: 0x0000000000000100
header: a9ffffff0100

kid: 0x0000000000ffffff
ctr: 0x000000000000ffff
header: a9ffffffffff

kid: 0x0000000000ffffff
ctr: 0x0000000000010000
header: aaffffff010000

kid: 0x0000000000ffffff
ctr: 0x0000000000ffffff
header: aaffffffffffff

kid: 0x0000000000ffffff
ctr: 0x0000000001000000
header: abffffff01000000

kid: 0x0000000000ffffff
ctr: 0x00000000ffffffff
header: abffffffffffffff

kid: 0x0000000000ffffff
ctr: 0x0000000100000000
header: acffffff0100000000

kid: 0x0000000000ffffff
ctr: 0x000000ffffffffff
header: acffffffffffffffff

kid: 0x0000000000ffffff
ctr: 0x0000010000000000
header: adffffff010000000000

kid: 0x0000000000ffffff
ctr: 0x0000ffffffffffff
header: adffffffffffffffffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 45

kid: 0x0000000000ffffff
ctr: 0x0001000000000000
header: aeffffff01000000000000

kid: 0x0000000000ffffff
ctr: 0x00ffffffffffffff
header: aeffffffffffffffffffff

kid: 0x0000000000ffffff
ctr: 0x0100000000000000
header: afffffff0100000000000000

kid: 0x0000000000ffffff
ctr: 0xffffffffffffffff
header: afffffffffffffffffffffff

kid: 0x0000000001000000
ctr: 0x0000000000000000
header: b001000000

kid: 0x0000000001000000
ctr: 0x0000000000000001
header: b101000000

kid: 0x0000000001000000
ctr: 0x00000000000000ff
header: b801000000ff

kid: 0x0000000001000000
ctr: 0x0000000000000100
header: b9010000000100

kid: 0x0000000001000000
ctr: 0x000000000000ffff
header: b901000000ffff

kid: 0x0000000001000000
ctr: 0x0000000000010000
header: ba01000000010000

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 46

kid: 0x0000000001000000
ctr: 0x0000000000ffffff
header: ba01000000ffffff

kid: 0x0000000001000000
ctr: 0x0000000001000000
header: bb0100000001000000

kid: 0x0000000001000000
ctr: 0x00000000ffffffff
header: bb01000000ffffffff

kid: 0x0000000001000000
ctr: 0x0000000100000000
header: bc010000000100000000

kid: 0x0000000001000000
ctr: 0x000000ffffffffff
header: bc01000000ffffffffff

kid: 0x0000000001000000
ctr: 0x0000010000000000
header: bd01000000010000000000

kid: 0x0000000001000000
ctr: 0x0000ffffffffffff
header: bd01000000ffffffffffff

kid: 0x0000000001000000
ctr: 0x0001000000000000
header: be0100000001000000000000

kid: 0x0000000001000000
ctr: 0x00ffffffffffffff
header: be01000000ffffffffffffff

kid: 0x0000000001000000
ctr: 0x0100000000000000
header: bf010000000100000000000000

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 47

kid: 0x0000000001000000
ctr: 0xffffffffffffffff
header: bf01000000ffffffffffffffff

kid: 0x00000000ffffffff
ctr: 0x0000000000000000
header: b0ffffffff

kid: 0x00000000ffffffff
ctr: 0x0000000000000001
header: b1ffffffff

kid: 0x00000000ffffffff
ctr: 0x00000000000000ff
header: b8ffffffffff

kid: 0x00000000ffffffff
ctr: 0x0000000000000100
header: b9ffffffff0100

kid: 0x00000000ffffffff
ctr: 0x000000000000ffff
header: b9ffffffffffff

kid: 0x00000000ffffffff
ctr: 0x0000000000010000
header: baffffffff010000

kid: 0x00000000ffffffff
ctr: 0x0000000000ffffff
header: baffffffffffffff

kid: 0x00000000ffffffff
ctr: 0x0000000001000000
header: bbffffffff01000000

kid: 0x00000000ffffffff
ctr: 0x00000000ffffffff
header: bbffffffffffffffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 48

kid: 0x00000000ffffffff
ctr: 0x0000000100000000
header: bcffffffff0100000000

kid: 0x00000000ffffffff
ctr: 0x000000ffffffffff
header: bcffffffffffffffffff

kid: 0x00000000ffffffff
ctr: 0x0000010000000000
header: bdffffffff010000000000

kid: 0x00000000ffffffff
ctr: 0x0000ffffffffffff
header: bdffffffffffffffffffff

kid: 0x00000000ffffffff
ctr: 0x0001000000000000
header: beffffffff01000000000000

kid: 0x00000000ffffffff
ctr: 0x00ffffffffffffff
header: beffffffffffffffffffffff

kid: 0x00000000ffffffff
ctr: 0x0100000000000000
header: bfffffffff0100000000000000

kid: 0x00000000ffffffff
ctr: 0xffffffffffffffff
header: bfffffffffffffffffffffffff

kid: 0x0000000100000000
ctr: 0x0000000000000000
header: c00100000000

kid: 0x0000000100000000
ctr: 0x0000000000000001
header: c10100000000

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 49

kid: 0x0000000100000000
ctr: 0x00000000000000ff
header: c80100000000ff

kid: 0x0000000100000000
ctr: 0x0000000000000100
header: c901000000000100

kid: 0x0000000100000000
ctr: 0x000000000000ffff
header: c90100000000ffff

kid: 0x0000000100000000
ctr: 0x0000000000010000
header: ca0100000000010000

kid: 0x0000000100000000
ctr: 0x0000000000ffffff
header: ca0100000000ffffff

kid: 0x0000000100000000
ctr: 0x0000000001000000
header: cb010000000001000000

kid: 0x0000000100000000
ctr: 0x00000000ffffffff
header: cb0100000000ffffffff

kid: 0x0000000100000000
ctr: 0x0000000100000000
header: cc01000000000100000000

kid: 0x0000000100000000
ctr: 0x000000ffffffffff
header: cc0100000000ffffffffff

kid: 0x0000000100000000
ctr: 0x0000010000000000
header: cd0100000000010000000000

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 50

kid: 0x0000000100000000
ctr: 0x0000ffffffffffff
header: cd0100000000ffffffffffff

kid: 0x0000000100000000
ctr: 0x0001000000000000
header: ce010000000001000000000000

kid: 0x0000000100000000
ctr: 0x00ffffffffffffff
header: ce0100000000ffffffffffffff

kid: 0x0000000100000000
ctr: 0x0100000000000000
header: cf01000000000100000000000000

kid: 0x0000000100000000
ctr: 0xffffffffffffffff
header: cf0100000000ffffffffffffffff

kid: 0x000000ffffffffff
ctr: 0x0000000000000000
header: c0ffffffffff

kid: 0x000000ffffffffff
ctr: 0x0000000000000001
header: c1ffffffffff

kid: 0x000000ffffffffff
ctr: 0x00000000000000ff
header: c8ffffffffffff

kid: 0x000000ffffffffff
ctr: 0x0000000000000100
header: c9ffffffffff0100

kid: 0x000000ffffffffff
ctr: 0x000000000000ffff
header: c9ffffffffffffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 51

kid: 0x000000ffffffffff
ctr: 0x0000000000010000
header: caffffffffff010000

kid: 0x000000ffffffffff
ctr: 0x0000000000ffffff
header: caffffffffffffffff

kid: 0x000000ffffffffff
ctr: 0x0000000001000000
header: cbffffffffff01000000

kid: 0x000000ffffffffff
ctr: 0x00000000ffffffff
header: cbffffffffffffffffff

kid: 0x000000ffffffffff
ctr: 0x0000000100000000
header: ccffffffffff0100000000

kid: 0x000000ffffffffff
ctr: 0x000000ffffffffff
header: ccffffffffffffffffffff

kid: 0x000000ffffffffff
ctr: 0x0000010000000000
header: cdffffffffff010000000000

kid: 0x000000ffffffffff
ctr: 0x0000ffffffffffff
header: cdffffffffffffffffffffff

kid: 0x000000ffffffffff
ctr: 0x0001000000000000
header: ceffffffffff01000000000000

kid: 0x000000ffffffffff
ctr: 0x00ffffffffffffff
header: ceffffffffffffffffffffffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 52

kid: 0x000000ffffffffff
ctr: 0x0100000000000000
header: cfffffffffff0100000000000000

kid: 0x000000ffffffffff
ctr: 0xffffffffffffffff
header: cfffffffffffffffffffffffffff

kid: 0x0000010000000000
ctr: 0x0000000000000000
header: d0010000000000

kid: 0x0000010000000000
ctr: 0x0000000000000001
header: d1010000000000

kid: 0x0000010000000000
ctr: 0x00000000000000ff
header: d8010000000000ff

kid: 0x0000010000000000
ctr: 0x0000000000000100
header: d90100000000000100

kid: 0x0000010000000000
ctr: 0x000000000000ffff
header: d9010000000000ffff

kid: 0x0000010000000000
ctr: 0x0000000000010000
header: da010000000000010000

kid: 0x0000010000000000
ctr: 0x0000000000ffffff
header: da010000000000ffffff

kid: 0x0000010000000000
ctr: 0x0000000001000000
header: db01000000000001000000

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 53

kid: 0x0000010000000000
ctr: 0x00000000ffffffff
header: db010000000000ffffffff

kid: 0x0000010000000000
ctr: 0x0000000100000000
header: dc0100000000000100000000

kid: 0x0000010000000000
ctr: 0x000000ffffffffff
header: dc010000000000ffffffffff

kid: 0x0000010000000000
ctr: 0x0000010000000000
header: dd010000000000010000000000

kid: 0x0000010000000000
ctr: 0x0000ffffffffffff
header: dd010000000000ffffffffffff

kid: 0x0000010000000000
ctr: 0x0001000000000000
header: de01000000000001000000000000

kid: 0x0000010000000000
ctr: 0x00ffffffffffffff
header: de010000000000ffffffffffffff

kid: 0x0000010000000000
ctr: 0x0100000000000000
header: df0100000000000100000000000000

kid: 0x0000010000000000
ctr: 0xffffffffffffffff
header: df010000000000ffffffffffffffff

kid: 0x0000ffffffffffff
ctr: 0x0000000000000000
header: d0ffffffffffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 54

kid: 0x0000ffffffffffff
ctr: 0x0000000000000001
header: d1ffffffffffff

kid: 0x0000ffffffffffff
ctr: 0x00000000000000ff
header: d8ffffffffffffff

kid: 0x0000ffffffffffff
ctr: 0x0000000000000100
header: d9ffffffffffff0100

kid: 0x0000ffffffffffff
ctr: 0x000000000000ffff
header: d9ffffffffffffffff

kid: 0x0000ffffffffffff
ctr: 0x0000000000010000
header: daffffffffffff010000

kid: 0x0000ffffffffffff
ctr: 0x0000000000ffffff
header: daffffffffffffffffff

kid: 0x0000ffffffffffff
ctr: 0x0000000001000000
header: dbffffffffffff01000000

kid: 0x0000ffffffffffff
ctr: 0x00000000ffffffff
header: dbffffffffffffffffffff

kid: 0x0000ffffffffffff
ctr: 0x0000000100000000
header: dcffffffffffff0100000000

kid: 0x0000ffffffffffff
ctr: 0x000000ffffffffff
header: dcffffffffffffffffffffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 55

kid: 0x0000ffffffffffff
ctr: 0x0000010000000000
header: ddffffffffffff010000000000

kid: 0x0000ffffffffffff
ctr: 0x0000ffffffffffff
header: ddffffffffffffffffffffffff

kid: 0x0000ffffffffffff
ctr: 0x0001000000000000
header: deffffffffffff01000000000000

kid: 0x0000ffffffffffff
ctr: 0x00ffffffffffffff
header: deffffffffffffffffffffffffff

kid: 0x0000ffffffffffff
ctr: 0x0100000000000000
header: dfffffffffffff0100000000000000

kid: 0x0000ffffffffffff
ctr: 0xffffffffffffffff
header: dfffffffffffffffffffffffffffff

kid: 0x0001000000000000
ctr: 0x0000000000000000
header: e001000000000000

kid: 0x0001000000000000
ctr: 0x0000000000000001
header: e101000000000000

kid: 0x0001000000000000
ctr: 0x00000000000000ff
header: e801000000000000ff

kid: 0x0001000000000000
ctr: 0x0000000000000100
header: e9010000000000000100

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 56

kid: 0x0001000000000000
ctr: 0x000000000000ffff
header: e901000000000000ffff

kid: 0x0001000000000000
ctr: 0x0000000000010000
header: ea01000000000000010000

kid: 0x0001000000000000
ctr: 0x0000000000ffffff
header: ea01000000000000ffffff

kid: 0x0001000000000000
ctr: 0x0000000001000000
header: eb0100000000000001000000

kid: 0x0001000000000000
ctr: 0x00000000ffffffff
header: eb01000000000000ffffffff

kid: 0x0001000000000000
ctr: 0x0000000100000000
header: ec010000000000000100000000

kid: 0x0001000000000000
ctr: 0x000000ffffffffff
header: ec01000000000000ffffffffff

kid: 0x0001000000000000
ctr: 0x0000010000000000
header: ed01000000000000010000000000

kid: 0x0001000000000000
ctr: 0x0000ffffffffffff
header: ed01000000000000ffffffffffff

kid: 0x0001000000000000
ctr: 0x0001000000000000
header: ee0100000000000001000000000000

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 57

kid: 0x0001000000000000
ctr: 0x00ffffffffffffff
header: ee01000000000000ffffffffffffff

kid: 0x0001000000000000
ctr: 0x0100000000000000
header: ef010000000000000100000000000000

kid: 0x0001000000000000
ctr: 0xffffffffffffffff
header: ef01000000000000ffffffffffffffff

kid: 0x00ffffffffffffff
ctr: 0x0000000000000000
header: e0ffffffffffffff

kid: 0x00ffffffffffffff
ctr: 0x0000000000000001
header: e1ffffffffffffff

kid: 0x00ffffffffffffff
ctr: 0x00000000000000ff
header: e8ffffffffffffffff

kid: 0x00ffffffffffffff
ctr: 0x0000000000000100
header: e9ffffffffffffff0100

kid: 0x00ffffffffffffff
ctr: 0x000000000000ffff
header: e9ffffffffffffffffff

kid: 0x00ffffffffffffff
ctr: 0x0000000000010000
header: eaffffffffffffff010000

kid: 0x00ffffffffffffff
ctr: 0x0000000000ffffff
header: eaffffffffffffffffffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 58

kid: 0x00ffffffffffffff
ctr: 0x0000000001000000
header: ebffffffffffffff01000000

kid: 0x00ffffffffffffff
ctr: 0x00000000ffffffff
header: ebffffffffffffffffffffff

kid: 0x00ffffffffffffff
ctr: 0x0000000100000000
header: ecffffffffffffff0100000000

kid: 0x00ffffffffffffff
ctr: 0x000000ffffffffff
header: ecffffffffffffffffffffffff

kid: 0x00ffffffffffffff
ctr: 0x0000010000000000
header: edffffffffffffff010000000000

kid: 0x00ffffffffffffff
ctr: 0x0000ffffffffffff
header: edffffffffffffffffffffffffff

kid: 0x00ffffffffffffff
ctr: 0x0001000000000000
header: eeffffffffffffff01000000000000

kid: 0x00ffffffffffffff
ctr: 0x00ffffffffffffff
header: eeffffffffffffffffffffffffffff

kid: 0x00ffffffffffffff
ctr: 0x0100000000000000
header: efffffffffffffff0100000000000000

kid: 0x00ffffffffffffff
ctr: 0xffffffffffffffff
header: efffffffffffffffffffffffffffffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 59

kid: 0x0100000000000000
ctr: 0x0000000000000000
header: f00100000000000000

kid: 0x0100000000000000
ctr: 0x0000000000000001
header: f10100000000000000

kid: 0x0100000000000000
ctr: 0x00000000000000ff
header: f80100000000000000ff

kid: 0x0100000000000000
ctr: 0x0000000000000100
header: f901000000000000000100

kid: 0x0100000000000000
ctr: 0x000000000000ffff
header: f90100000000000000ffff

kid: 0x0100000000000000
ctr: 0x0000000000010000
header: fa0100000000000000010000

kid: 0x0100000000000000
ctr: 0x0000000000ffffff
header: fa0100000000000000ffffff

kid: 0x0100000000000000
ctr: 0x0000000001000000
header: fb010000000000000001000000

kid: 0x0100000000000000
ctr: 0x00000000ffffffff
header: fb0100000000000000ffffffff

kid: 0x0100000000000000
ctr: 0x0000000100000000
header: fc01000000000000000100000000

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 60

kid: 0x0100000000000000
ctr: 0x000000ffffffffff
header: fc0100000000000000ffffffffff

kid: 0x0100000000000000
ctr: 0x0000010000000000
header: fd0100000000000000010000000000

kid: 0x0100000000000000
ctr: 0x0000ffffffffffff
header: fd0100000000000000ffffffffffff

kid: 0x0100000000000000
ctr: 0x0001000000000000
header: fe010000000000000001000000000000

kid: 0x0100000000000000
ctr: 0x00ffffffffffffff
header: fe0100000000000000ffffffffffffff

kid: 0x0100000000000000
ctr: 0x0100000000000000
header: ff010000000000000001000000000000
 00

kid: 0x0100000000000000
ctr: 0xffffffffffffffff
header: ff0100000000000000ffffffffffffff
 ff

kid: 0xffffffffffffffff
ctr: 0x0000000000000000
header: f0ffffffffffffffff

kid: 0xffffffffffffffff
ctr: 0x0000000000000001
header: f1ffffffffffffffff

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 61

kid: 0xffffffffffffffff
ctr: 0x00000000000000ff
header: f8ffffffffffffffffff

kid: 0xffffffffffffffff
ctr: 0x0000000000000100
header: f9ffffffffffffffff0100

kid: 0xffffffffffffffff
ctr: 0x000000000000ffff
header: f9ffffffffffffffffffff

kid: 0xffffffffffffffff
ctr: 0x0000000000010000
header: faffffffffffffffff010000

kid: 0xffffffffffffffff
ctr: 0x0000000000ffffff
header: faffffffffffffffffffffff

kid: 0xffffffffffffffff
ctr: 0x0000000001000000
header: fbffffffffffffffff01000000

kid: 0xffffffffffffffff
ctr: 0x00000000ffffffff
header: fbffffffffffffffffffffffff

kid: 0xffffffffffffffff
ctr: 0x0000000100000000
header: fcffffffffffffffff0100000000

kid: 0xffffffffffffffff
ctr: 0x000000ffffffffff
header: fcffffffffffffffffffffffffff

kid: 0xffffffffffffffff
ctr: 0x0000010000000000
header: fdffffffffffffffff010000000000

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 62

kid: 0xffffffffffffffff
ctr: 0x0000ffffffffffff
header: fdffffffffffffffffffffffffffff

kid: 0xffffffffffffffff
ctr: 0x0001000000000000
header: feffffffffffffffff01000000000000

kid: 0xffffffffffffffff
ctr: 0x00ffffffffffffff
header: feffffffffffffffffffffffffffffff

kid: 0xffffffffffffffff
ctr: 0x0100000000000000
header: ffffffffffffffffff01000000000000
 00

kid: 0xffffffffffffffff
ctr: 0xffffffffffffffff
header: ffffffffffffffffffffffffffffffff
 ff

C.2. AEAD Encryption/Decryption Using AES-CTR and HMAC

For each case, we provide:

cipher_suite: The index of the cipher suite in use (see Section 8.1)

key: The key input to encryption/decryption

enc_key: The encryption subkey produced by the derive_subkeys() algorithm

auth_key: The encryption subkey produced by the derive_subkeys() algorithm

nonce: The nonce input to encryption/decryption

aad: The aad input to encryption/decryption

pt: The plaintext

ct: The ciphertext

An implementation should verify that the following are true, where AEAD.Encrypt and

AEAD.Decrypt are as defined in Section 4.5.1:

AEAD.Encrypt(key, nonce, aad, pt) == ct

AEAD.Decrypt(key, nonce, aad, ct) == pt

The other values in the test vector are intermediate values provided to facilitate debugging of

test failures.

•

•

•

•

•

•

•

•

•

•

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 63

cipher_suite: 0x0001
key: 000102030405060708090a0b0c0d0e0f
 101112131415161718191a1b1c1d1e1f
 202122232425262728292a2b2c2d2e2f
enc_key: 000102030405060708090a0b0c0d0e0f
auth_key: 101112131415161718191a1b1c1d1e1f
 202122232425262728292a2b2c2d2e2f
nonce: 101112131415161718191a1b
aad: 4945544620534672616d65205747
pt: 64726166742d696574662d736672616d
 652d656e63
ct: 6339af04ada1d064688a442b8dc69d5b
 6bfa40f4bef0583e8081069cc60705

cipher_suite: 0x0002
key: 000102030405060708090a0b0c0d0e0f
 101112131415161718191a1b1c1d1e1f
 202122232425262728292a2b2c2d2e2f
enc_key: 000102030405060708090a0b0c0d0e0f
auth_key: 101112131415161718191a1b1c1d1e1f
 202122232425262728292a2b2c2d2e2f
nonce: 101112131415161718191a1b
aad: 4945544620534672616d65205747
pt: 64726166742d696574662d736672616d
 652d656e63
ct: 6339af04ada1d064688a442b8dc69d5b
 6bfa40f4be6e93b7da076927bb

cipher_suite: 0x0003
key: 000102030405060708090a0b0c0d0e0f
 101112131415161718191a1b1c1d1e1f
 202122232425262728292a2b2c2d2e2f
enc_key: 000102030405060708090a0b0c0d0e0f
auth_key: 101112131415161718191a1b1c1d1e1f
 202122232425262728292a2b2c2d2e2f
nonce: 101112131415161718191a1b
aad: 4945544620534672616d65205747
pt: 64726166742d696574662d736672616d
 652d656e63
ct: 6339af04ada1d064688a442b8dc69d5b
 6bfa40f4be09480509

C.3. SFrame Encryption/Decryption

For each case, we provide:

cipher_suite: The index of the cipher suite in use (see Section 8.1)

kid: A KID value

ctr: A CTR value

base_key: The base_key input to the derive_key_salt algorithm

•

•

•

•

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 64

sframe_key_label: The label used to derive sframe_key in the derive_key_salt algorithm

sframe_salt_label: The label used to derive sframe_salt in the derive_key_salt

algorithm

sframe_secret: The sframe_secret variable in the derive_key_salt algorithm

sframe_key: The sframe_key value produced by the derive_key_salt algorithm

sframe_salt: The sframe_salt value produced by the derive_key_salt algorithm

metadata: The metadata input to the SFrame encrypt algorithm

pt: The plaintext

ct: The SFrame ciphertext

An implementation should verify that the following are true, where encrypt and decrypt are as

defined in Section 4.4, using an SFrame context initialized with base_key assigned to kid:

encrypt(ctr, kid, metadata, plaintext) == ct

decrypt(metadata, ct) == pt

The other values in the test vector are intermediate values provided to facilitate debugging of

test failures.

•

•

•

•

•

•

•

•

•

•

cipher_suite: 0x0001
kid: 0x0000000000000123
ctr: 0x0000000000004567
base_key: 000102030405060708090a0b0c0d0e0f
sframe_key_label: 534672616d6520312e30205365637265
 74206b65792000000000000001230001
sframe_salt_label: 534672616d6520312e30205365637265
 742073616c7420000000000000012300
 01
sframe_secret: d926952ca8b7ec4a95941d1ada3a5203
 ceff8cceee34f574d23909eb314c40c0
sframe_key: 3f7d9a7c83ae8e1c8a11ae695ab59314
 b367e359fadac7b9c46b2bc6f81f46e1
 6b96f0811868d59402b7e870102720b3
sframe_salt: 50b29329a04dc0f184ac3168
metadata: 4945544620534672616d65205747
nonce: 50b29329a04dc0f184ac740f
aad: 99012345674945544620534672616d65
 205747
pt: 64726166742d696574662d736672616d
 652d656e63
ct: 9901234567449408b6f490086165b9d6
 f62b24ae1a59a56486b4ae8ed036b889
 12e24f11

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 65

cipher_suite: 0x0002
kid: 0x0000000000000123
ctr: 0x0000000000004567
base_key: 000102030405060708090a0b0c0d0e0f
sframe_key_label: 534672616d6520312e30205365637265
 74206b65792000000000000001230002
sframe_salt_label: 534672616d6520312e30205365637265
 742073616c7420000000000000012300
 02
sframe_secret: d926952ca8b7ec4a95941d1ada3a5203
 ceff8cceee34f574d23909eb314c40c0
sframe_key: e2ec5c797540310483b16bf6e7a570d2
 a27d192fe869c7ccd8584a8d9dab9154
 9fbe553f5113461ec6aa83bf3865553e
sframe_salt: e68ac8dd3d02fbcd368c5577
metadata: 4945544620534672616d65205747
nonce: e68ac8dd3d02fbcd368c1010
aad: 99012345674945544620534672616d65
 205747
pt: 64726166742d696574662d736672616d
 652d656e63
ct: 99012345673f31438db4d09434e43afa
 0f8a2f00867a2be085046a9f5cb4f101
 d607

cipher_suite: 0x0003
kid: 0x0000000000000123
ctr: 0x0000000000004567
base_key: 000102030405060708090a0b0c0d0e0f
sframe_key_label: 534672616d6520312e30205365637265
 74206b65792000000000000001230003
sframe_salt_label: 534672616d6520312e30205365637265
 742073616c7420000000000000012300
 03
sframe_secret: d926952ca8b7ec4a95941d1ada3a5203
 ceff8cceee34f574d23909eb314c40c0
sframe_key: 2c5703089cbb8c583475e4fc461d97d1
 8809df79b6d550f78eb6d50ffa80d892
 11d57909934f46f5405e38cd583c69fe
sframe_salt: 38c16e4f5159700c00c7f350
metadata: 4945544620534672616d65205747
nonce: 38c16e4f5159700c00c7b637
aad: 99012345674945544620534672616d65
 205747
pt: 64726166742d696574662d736672616d
 652d656e63
ct: 990123456717fc8af28a5a695afcfc6c
 8df6358a17e26b2fcb3bae32e443

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 66

cipher_suite: 0x0004
kid: 0x0000000000000123
ctr: 0x0000000000004567
base_key: 000102030405060708090a0b0c0d0e0f
sframe_key_label: 534672616d6520312e30205365637265
 74206b65792000000000000001230004
sframe_salt_label: 534672616d6520312e30205365637265
 742073616c7420000000000000012300
 04
sframe_secret: d926952ca8b7ec4a95941d1ada3a5203
 ceff8cceee34f574d23909eb314c40c0
sframe_key: d34f547f4ca4f9a7447006fe7fcbf768
sframe_salt: 75234edefe07819026751816
metadata: 4945544620534672616d65205747
nonce: 75234edefe07819026755d71
aad: 99012345674945544620534672616d65
 205747
pt: 64726166742d696574662d736672616d
 652d656e63
ct: 9901234567b7412c2513a1b66dbb4884
 1bbaf17f598751176ad847681a69c6d0
 b091c07018ce4adb34eb

cipher_suite: 0x0005
kid: 0x0000000000000123
ctr: 0x0000000000004567
base_key: 000102030405060708090a0b0c0d0e0f
sframe_key_label: 534672616d6520312e30205365637265
 74206b65792000000000000001230005
sframe_salt_label: 534672616d6520312e30205365637265
 742073616c7420000000000000012300
 05
sframe_secret: 0fc3ea6de6aac97a35f194cf9bed94d4
 b5230f1cb45a785c9fe5dce9c188938a
 b6ba005bc4c0a19181599e9d1bcf7b74
 aca48b60bf5e254e546d809313e083a3
sframe_key: d3e27b0d4a5ae9e55df01a70e6d4d28d
 969b246e2936f4b7a5d9b494da6b9633
sframe_salt: 84991c167b8cd23c93708ec7
metadata: 4945544620534672616d65205747
nonce: 84991c167b8cd23c9370cba0
aad: 99012345674945544620534672616d65
 205747
pt: 64726166742d696574662d736672616d
 652d656e63
ct: 990123456794f509d36e9beacb0e261d
 99c7d1e972f1fed787d4049f17ca2135
 3c1cc24d56ceabced279

Acknowledgements

The authors wish to specially thank as one of the early contributors to the

document. His passion and energy were key to the design and development of SFrame.

Dr. Alex Gouaillard

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 67

Contributors

Frederic Jacobs

Apple

 frederic.jacobs@apple.com Email:

Marta Mularczyk

Amazon

 mulmarta@amazon.com Email:

Suhas Nandakumar

Cisco

 snandaku@cisco.com Email:

Tomas Rigaux

Cisco

 trigaux@cisco.com Email:

Raphael Robert

Phoenix R&D

 ietf@raphaelrobert.com Email:

Authors' Addresses

Emad Omara

Apple

 eomara@apple.com Email:

Justin Uberti

Google

 juberti@google.com Email:

Sergio Garcia Murillo

CoSMo Software

 sergio.garcia.murillo@cosmosoftware.io Email:

Richard L. Barnes ()editor

Cisco

 rlb@ipv.sx Email:

Youenn Fablet

Apple

 youenn@apple.com Email:

Internet-Draft SFrame June 2024

Omara, et al. Expires 26 December 2024 Page 68

mailto:frederic.jacobs@apple.com
mailto:mulmarta@amazon.com
mailto:snandaku@cisco.com
mailto:trigaux@cisco.com
mailto:ietf@raphaelrobert.com
mailto:eomara@apple.com
mailto:juberti@google.com
mailto:sergio.garcia.murillo@cosmosoftware.io
mailto:rlb@ipv.sx
mailto:youenn@apple.com

	Secure Frame (SFrame)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Goals
	4. SFrame
	4.1. Application Context
	4.2. SFrame Ciphertext
	4.3. SFrame Header
	4.4. Encryption Schema
	4.4.1. Key Selection
	4.4.2. Key Derivation
	4.4.3. Encryption
	4.4.4. Decryption

	4.5. Cipher Suites
	4.5.1. AES-CTR with SHA2

	5. Key Management
	5.1. Sender Keys
	5.2. MLS

	6. Media Considerations
	6.1. Selective Forwarding Units
	6.1.1. LastN and RTP Stream Reuse
	6.1.2. Simulcast
	6.1.3. SVC

	6.2. Video Key Frames
	6.3. Partial Decoding

	7. Security Considerations
	7.1. No Header Confidentiality
	7.2. No per-Sender Authentication
	7.3. Key Management
	7.4. Replay
	7.5. Risks Due to Short Tags

	8. IANA Considerations
	8.1. SFrame Cipher Suites

	9. Application Responsibilities
	9.1. Header Value Uniqueness
	9.2. Key Management Framework
	9.3. Anti-Replay
	9.4. Metadata

	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Example API
	Appendix B. Overhead Analysis
	B.1. Assumptions
	B.2. Audio
	B.3. Video
	B.4. Conferences
	B.5. SFrame over RTP

	Appendix C. Test Vectors
	C.1. Header Encoding/Decoding
	C.2. AEAD Encryption/Decryption Using AES-CTR and HMAC
	C.3. SFrame Encryption/Decryption

	Acknowledgements
	Contributors
	Authors' Addresses

