TEN Y
.F_ Ei&fzifbtﬁ {2- g- E:.Gg

GATEWAY ROUTING
Radia Perlman
Bolt Beranek and Newman Inc.
January 27, 1378
PRTN #2421

¥y PSFWN 299

P

GATEWAY ROUTING

This paper proposes an algorithm to improve gateway routing.
It is in two parts because the second part is an extension to the
first. The first part can be implemented without the second, and
is a scheme to route packets successfully around failed gateways.
The second is a scheme to improve overall flow, both by
distributing traffic more evenly throughout the catenet (the
collection of nets connected by gateways) and by providing
feedback to sources when they are producing traffic too quickly.

This paper is not a design specification -- there are some
details yet toc be worked out and some issues yet to be resolved.
This is written to convey our current thinking on the topic.

Another paper has been released by Virginia Strazisar on
gateway routing. It is a proposal to use Gallager's algorithm
and is a different approach to the problem. This scheme is
conceptually simpler. It does not attempt to achieve theoretical
optimal limits of overall catenet traffic throughput or overall
catenet traffic delay. Instead it achieves good results with
less overhead.

It is not necessary to have read Strazisar's paper in order

to understand this one.

ROUTING ARQOUND FAILZID CGATEWAYS
l.1 Introduction

This algorithm is designed for finding reasonable paths, not
optimal ones. It does not attempt to optimize either delay for a
single packet, or the average delay shroughout the catenet. It
is designed for simplicity, low cost in terms of the information
which must be exchanged between gateways, and workability in
cooperating with gateways that do not implement this algorithm.

The basic idea is that each gateway cooperating in this
scheme has a model of the connectivity of the catenet. As events
occur which change the connectivity of the catenet, these events
are reported and circulated throughout the catenet.

Each gateway uses this information to compute a distance
matrix of shortest distance paths between each pair of nodes.

Packets are routed on shortest length paths.

1.2 Terminology

catenet -- the collection of nets connected by gateways. For the
purpose of describing this algorithm, gateways will be considered

nodes in a graph, with networks considered to be links.

neighbors -- gateways on a common ne:work, i.e., gateways that
can potentially communicate without intermediate gateways. We
will refer to gateways as neighbors even if communication between

‘them is currently failing.

=

simple gateways -- gateways that do not implement this algorithm.

1.3 Connectivity Information

Connectivity information is passed in the form of link-state
packets, in which a gateway reports which of its neighbors it can
communicate with. (Gateways contain an assembled-in list of
neighbors, and a new gateway starting up gets in touch with its
neighbors so that they can add it to their list if it was not
already there.) A gateway can report this information
periodically but will definitely report it when the state of a
link between itself and one of its neighbors changes. When a
node A hears the packet generated by D about the state of the
links to D's neighbors, A reports the information to each of its
neighbors. In order to avoid transmitting duplicate information,
a sequence number will be transmitted with the connectivity
information. A node A remembers the .last sequence number
associated with D that it reported to its neighbors and will not
re-report connectivity information for node D until it receives
information with a higher sequence number.

Determining the status of a link is dependent on the
networks involved. One way is to send a neighbor a
self-addressed packet and see if it gets back. This works for
simple gateways, too.

When a gateway comes up, it will not know what the seguence
numbers are, either for information it must report or for

information from other sources. For this reason and because of

the possibility of lost packets, neichbors will exchange sequence
numbers packets, which contain the current sequence numbers for

all nodes.

1.4 Routing Decision

There must be some sort of associative nonnegative distance
function for routes through the caterst. A gateway G will route
a packet destined f. -de D to a noéz B such that d4(B,D) <
d(G,D). Requiring the distance function to decrease at each hop
assures no steady-state loops.

The simplest such distance function is the number of hops
(i.e. nets). A gateway will always choose the route with the
fewest number of hops. If there are -wo such routes, the gateway
can load split, sending half its packz=ts down each path.

It is important that all gateways use the same distance
measure for choosing routes or it will be possible for a
steady-state loop to form (A could send traffic for C through B
because this route has the fewest numaer of hops, and B could
send traffic for C through A because :hat path has the smallest
delay). 1In this algorithm, temporary loops are not serious,
because connectivity information is rzported to all nodes as soon
as received, so that deadlocks cannot occur. A packet might loop
a few times but the loop will eventually go away when the
connectivity information is received.

In the description of the algori=hm we will use-number of

hops as the distance function. The a_gjorithm generalizes to any

P

distance function, but we will use hop count in the initial

implementation.

1.5 Sequence Numbers, Clocks, etc.

If some global clock or monotonically increasing number were
kept between gateways, connectivity information could be stamped
with the clock instead of a sequence number. This has the
advantage that gateways would not have to store seguence numbers
for all gateways, and would eliminate the need for
seguence-numbers packets. However, it is undesirable to wait for
a global clock to be implemented before implementing improved
gateway routing.

Another possibility is having each gateway contain a
hardware clock that remains running even when the gateway
crashes, or even if the power fails. Such are available, but it
seems undesirable to require all gateways to have one.

Therefore we will implement sequence numbers. When
generating a link-state packet, a gateway simply increments the
number used on the previous packet, modulo 16 bits. When hearing
a link-state packet generated by gateway G, a gateway decides it
is recent if the sequence number is higher than the last seguence
number from G.

To keep neighbors up-to-date with each other,
sequence-numbers packets will be exchanged. These packets

contain the latest sequence numbers for each gateway. A neighbor

N, upon receiving a sequence-numbers packet from gateway G,
checks to see if G has sequence numbsrs at least as recent as N
has. For each node A for which N has a higher seguence number
than G, N will send the most recent link-state packet from A that
N knows about. Thus sequence-numbers packets serve as requests
for latest connectivity information.

There will be one seguence number, say 0, reserved to mean
"sequence number not known". This will enable a gateway starting
up to request complete information from a neighbor. When a
gateway is not heard from for a long time, gateways should "time
out" the old sequence number and flag the sequence number as old.
Then, when the gateway comes back up, any sequence number will be
accepted.

When a gateway G first comes up, it sends a sequence-numbers
packet to a neighbor A, with all saqusnce numbers @. If A has a
sequence number for G (because G was down for a sufficiently
short amount of time that A did not time out the sequence
number), G will use that sequence number. Otherwise G can use

any segquence number.

1.6 Gateway internal algorithm

Ignoring any simple gateways, each gateway has a table of
all gateways, in a matrix. Entry i,3j=0 means i=j; entry i,3=1
means 1 and j are neighbors and the link between them is up; and
entry 1,j=infinity means they are not neighbors or the 1ink

between them is currently down. (A link is down if either

neighbor thinks it is down.) To find out which neighbor teo send
a packet to for each gateway in the catenet, the gateway
"squares" the matrix at most log n times (base 2), where n is the
number of gateways. "Squaring" means performing matrix
multiplication of the matrix by itself using the operations plus
and min. If the connectivity matrix is represented as C and the
square of the connectivity matrix as €2, this operation can be

stated as:
C2(i,Jj) = min over k [C(i,k) + C(k,3)]

The matrix is squared repeatedly (by setting C = C2 and repeating
the above operation) until the matrix resulting from the squared
operation, C2, is the same as the previous matrix, C. The first
time the matrix is squared, the entries i,] are either infinity
or are path lengths for paths less than 2 hops in length.
Squaring again yields all paths of length 4 or less, etc. In the
final matrix, entry i,j is the length of the shortest path from i
to j. If i is a neighbor of j, the shortest path will be with k
equal to either i or j and with the entry i,j in the final matrix

equal to 1.

As a result of this operation, the gateway has a matrix of
distances between gateways. To decide to which neighbor to send
a packet destined for j, the gateway scans the matrix entries k,J
for each neighbor, k. It chooses the neighbor k with the
smallest value for entry k,j. If desired the gateway can

construct a table indicating to which neighbor to send a packet

—

for each destination in the catenet. The gateway can then simply
look up to which neighbor to send a packet instead of checking
each neighbor's entry in the distancs wm=trix. Note that this

table would have to be recomputed each time the matrix changes.

1.7 Noticing out-of-date information

If a sequence number is very different than expected, or if
a gateway G receives a packet from a neighbor M, which G thinks
is closer to the destination than G is, G can send N a
sequence-numbers packet, which will cause N to send any link
state packets G has missed, and which will cause N to send G a
sequence-numbers packet if N has missed any link-state packets.
Since the connectivity information for each node has its own
sequence number (or timestamp), each of the gateways can benefit
from this exchange (each might have rore up-to-date information

than the other on different pieces of information).

1.8 Format of Routing packets

There are two kinds of packets -- link-state packets and
sequence-numbers packets. The link-state packet tells the state
of links with all neighbors. The secuence-numbers packet
contains sequence numbers for zll gatewzys (from which can be
deduced how up-to-date the gateway's information is}.

Link-state packets get broadcast throughout the catenet.
Sequence-numbers packets are sent only to the neighbors of the

gateway generating the packet.

Link-state packets

These packets contain the state of all links f£rom the
reporting node, in the form:
node number (% of gateway reporting)
sequence number
neighbor number
link state
neighbor number
link state
etec.

Including all links has the advantage that gateways only
need to remember as many sequence numbers as there are other
gateways, not as many as there are links in the catenet.

When a gateway G hears a link-state packet from node A, G
ignores it if the packet's sequence number is not greater than

the last link-state packet it received from A. If the sequence

number is greater, G sends the packet to all of G's neighbors.

Sequence-numbers packets

The sequence-numbers packet contains sequence numbers for
all the nodes as understood by the sender. It is of the form:
node number (# of gateway reporting)
gateway #
seguence number
gateway #
sequence number
etc.

These packets are not passed around the catenet but can
merely be used by gateways to make sure they have not missed the
latest connectivity packets from each node. If a gateway sees

that a neighbor has an out-of-date sequence number for any node,

the gateway should send the latest link-state packet from that

o

node to the neighbor with out-of-datz information. Thus it is
important to save the latest link-st:zte packet received from each
gateway. These packets therefore ss=-ve two functions: keeping
neighbors informed about each othsr's states, and requesting

retransmission of specific link-statz packets.

1.9 Undesirable Paths

If there are some paths that ares undesirable for some
reason, the undesirable link can be zrbitrarily weighted against
by assigning it a hop value greater than 1. All gateways would
have a list of undesirable links, and when the link was reported
as up, they would insert the weighted number rather than 1 in the
distance matrix.

This is a way of generalizing the distance function slightly

without making the algorithm more cocmplex.

1.18 Simple Gateways

Simple gateways will not exchanze information about
themselves or their links. Thus gatazways will not discover a new
simple gateway automatically. Therefore the only simple gateways
that will be known will be ones that at least one neighbor
gateway knows about (either because it was assembled into the
program or because some human put it into the table).

There are a number of ways the information of where a simple

. gateway exists can be reported and transmitted. One reasonable

way is for neighbors that know about it to include information

= T =

about the simple gateway in their link-state packets, with link
state numbers reserved for meaning "simple gateway with link up"
and "simple gateway with link down".

Since the status of links between simple gateways can not be
reliably determined, gateways will use paths through simple
gateways only when no other path exists. It will be assumed that
any path between two simple gateways is always up.

To assure paths through simple gateways are adequately
weighted against, a hop value equal to the number of known
gateways can be assigned to any link with at least one end being

a simple gateway.

1.11 Traffic to a Net (not a gateway)

Most traffic is destined not to a gateway, but to a host on
a network. There could be many gateways attached to the network,
and a gateway G must choose which of the gateways attached to the
relevant net to send a packet to. This can be done by
considering networks as pseudo-nodes in the catenet. They are
different from gateway nodes in that they don't report any
connectivity information and in that connectivity between
neighbor gateways should not be deduced from the fact that both
gateways are attached to the same net. (Or if connectivity
between them is deduced that way, delay or cost should not be
decided by adding the delay from each gateway to the attached

net.)

=Sl

-

This can be accomplished by ordésring the gateways as nodes 1
te n, and ordering the pseudo-nodes zs nodes n+l to n+m in the
connectivity matrix (assuming there zre n gateways and m nets).
When calculating the distance matrix, ignore the pseudo-nodes
(only calculate according to the n ¥ n matrix). Then square the
(n+m) X (n+m) matrix consisting of the n X n distance matrix and
the connectivity information of links ending in pseudo-nodes
once. (Actually only entries involving a pseudo-node need he
calculated.) This assures that links ending in pseudo-nodes will

not influence the calculation of the distance matrix.

1.12 Reliable Transmission of Link=-S8State Packets

If a mechanism were provided to avoid loss of link-state
packets, neighbors would remain up-to-date automatically. This
could eliminate the need for sequencs-numbers packets.

A reliable transmission scheme would require at least twice
as much traffic, since every packet would need to be
acknowledged, and would require gateways to constantly try to
deliver the packets over failed links. This might be very
desirable, however, since a recovered link would be quickly
diagnosed.

Even if the implemented scheme did not require reliable
delivery, gateways communicating over lossy networks would

presumably require acknowledgments for each packet.

GATEWAY FLOW CONTROL
2.1 Introduction

This algorithm is designed for two purposes. One is to
‘route traffic more efficiently throughout the catenet by "load
splitting", i.e., not sending 211 traffic on one path. The other
purpose is to give traffic sources feedback on when they are
sending too much traffic so they can gquench themselves. Like the
"ROUTING AROUND FAILED GATEWAYS" algorithm, this is not an
algorithm that produces the theoretically optimal traffic flow,
but rather one that produces a reasonable traffic flow and is
designed to be simple.

This algorithm builds on the "ROUTING AROUND FAILED
GATEWAYS" algorithm. 5o we assume gateways are exchanging
connectivity information and computing a connectivity matrix and
a *'d connectivity matrix (the repeatedly squared result of the
connectivity matrix which gives a matrix of minimum distances
between nodes). I will refer to the connectivity matrix as CONN,
and the *'d connectivity matrix as *CONN*. Likewise I will refer
to a reliability matrix as REL and the *'d result as *REL¥.

The basic idea of this algorithm is that reliability
information is passed around with connectivity information. A
gateway, instead of sending ALL its traffic for a destination to
ONE of its neighbors that is the minimum distance from the
destination, splits its traffic to the destination among the set
of neighbors that are the minimum distance from the destination,

in a proportion so as to optimize the reliability of the route to

- T3 -

the destination. All traffic to the destination is sent along
the most reliable route until (and iZ) <hzt amount of traffic
causes the reliability of that route tc drop bazlow another route,
at which time a small amount of traffic is diverted to the
alternate route. 1In the steady stats, zraffic will be split
among paths of approximately equal relizbility.

The reason for using reliability in this algorithm is that
it is an easily ascertainable number. Gateways already keep
track of the percentage of packets they have had to drop.
Assuming that most packets are lost because the gateway had to
drop them, this is an adequate mezsure. If most packets were
lost in the net between gateways, the g=zteways would probably
require acknowledgments, so reliability could then be measured by
the percentage of packets that got acknowledged.

It would be possible toc use marginzl delay rather than
number of hops in the distance measure in the algorithm described
in the first part of this paper, which would result in the same
distribution of traffic as would result from the algorithm
described in Strazisar's paper, and would make the algorithm
described in this part of the paper unnecessary. However,
marginal delay (or delay) is much harder to measure and is less
likely to be immediately implementablse. 1In addition, this scheme
is less sensitive to incomplete informazion throughout the
catenet. ©Since the number of hops in rcoutes is liable to be a
very constant number (as opposed to é=lzy), slow or unreliable

propagation of information will not k2 2 serious problem.

2.2 The algorithm

In addition to merely bouncing packets off its neighbors to
determine connectivity, a gateway keeps statistics on the
percentage of traffic that gets through to the neighbor., Instead
of just reporting "the link between me and neighbor A is up", the
gateway should report "the link between me and neighbor A is 92%
up". If there is very little traffic between 2 gateways, but one
packet is sent and it gets there, it is still reasonable to
assume the path is 100% reliable (a low traffic path is
desirable).

Now gateways can construct two matriceé, a connectivity
matrix, CONN (with entries of infinity for neighbors less than
some reliability threshold apart) and a reliability matrix, REL.

If two neighbors report a link as having very different
reliabilities, both numbers can be stored in the matrix REL,
since entry (A,B) can mean the reliability of the link between A
and B as reported by A, and entry (B,A) can mean the reliability
of the link as reported by B. The reason in CONN that we assume
a link to be down if either end declares it down is that it is
the safe thing to do -—— if one end thinks the link is down,
something is wrong with the link and it is safer not to use it.
If what is wrong with the link is that one of the gateways died,
you will not get a report from the dead end that the link is no
longer operational. Connectivity information would have to get
timed out, adding needless complication when the simple ploy of

declaring a link down unless both neighbors declare it up works.

- 15 -=-

T

Gateways still compute *CONN* for the purpose of determining
the set of neighbors which are the minimum distance from the
destination. Traffic will be split amcng this set of neighbors.
The reason we restrict the next hop to this set is to avoid
loops. An example of a loop that could otherwise form is the

following: A

B
Node A sees two paths to D, the direct one of length 2 and the
one through B of length 3. B sees the same. If we allowed
gateways to send traffic over a path of nonminimal length
(without complicating the algorithm unreasonably or using a trick
we have not seen) A would send some of its traffic destined to D
through B and B would send some of its traffic to D through A, so

a packet to D could get bounced back and forth between A and B

indefinitely. This is not desirable.

Then gateways compute the reliability of the path to the
destination through each of the minimally distanced neighbors.
(This will be explained in the next section; for now assume that
number is known.) The gateway keeps a matrix of fractions, with
entry (1i,j) being the fraction of traffic destined to node J that
the gateway sends to node i as the next hop. For each of the
neighbers in the minimally distanced se* the gateway increases by
a little the traffic it sends to the neighbors with highest
reliability to the destination, and decreases by a little the

fraction of traffic it sends to the neighbors with lowest

- 16 -

——

reliability. The purpose of this is to maximize the reliability
of the path from that gateway to the destination.
The amount to adjust the fractions by on each update cycle

can be a parameter. If it is too small, this scheme will take

-‘too long to adjust to changes. 1If it is too large it will cause

“thrashing”. A reasonable amount to start out with is probably

on the arderlnf 10%.

2.3 Computing *REL*

Except for one problem which we'll fix up in the next
paragraph, *REL* is computed from REL in the same way as *CONN*
is computed from CONN (cf. section 1.6), repeatedly squaring the
matrix until the same matrix stabilizes. Except instead of using
the operations MIN and PLUS, use MAX and TIMES. To see this

consider the example: &

Pﬂygifﬂﬂwﬁﬁgi
4 1H;?E““wfﬂfﬁﬁrps

]
The reliability of the path between A and B is 90% times 80% if

it goes through C and it is 160% times 68% if it goes through D.
Thus the reliability of the path between A and B is MAX(72%,60%),
since you can assume traffic is being sent along the most
reliable path.

The problem is there might be some really long path using
obscure nodes that has 188% reliability along each hop, so this
method would tell you the reliability between A and B was 100%

even though that would be false since A would never choose that

- 17 =

path. Thus we have to restrict the set over which we take MAX in
sguaring the matrix to minimal distzncsd paths. We can do this
by computing both matrices simultarsously, and when we take MIN
for a row in the CONN matrix, we uss only those indices in the

row equal to the MIN in considering the MAX in the REL matrix.

2.4 Measuring Reliability

Gatewﬁy reliability is a function of both the gateways'
reliability and the reliability of the networks which the packet
traverses. It is assumed that the network specific code in each
gateway will guarantee a reasonable level of reliability for
transmission of packets across that network. For some networks,
such as the Arpanet, which provide highly reliable communications
paths, the network specific code may be very simple. 1In other
networks, such as the Packet Radio YNet, a retransmission and
acknowledgement scheme may be necessary to improve reliability on
the network.

If an acknowledgement scheme is used for purposes of
improving reliability on a network, then the percentage of
packets acknowledged may be used by the gateway to measure
reliability of the network. If such a mechanism is not used
(presumably because the network is reliable), then it is
reasonable to assume a fixed reliability for this network.

The reliability of the gateways is also a concern. The
major source of unreliability in ths gateways is the limitation

on the gateway's resources. When the gatewvay's buffer pool is

= 18 -

exhausted, the gateway will drop packets it can no longer store
and forward. Gateway reliability can be measured by counting the
number of packets received versus the number of packets dropped
due to lack of resources. (This is currently done in the
gateways.)

Thus, the reliability figure computed by a gateway in the
procedure outlined above is a function of both that gateway's
reliability and the reliability of the network about which the

gateway is reporting.

2.5 Source Quenching

If the reliability of a gateway's path to the destination
drops below some threshold, and the gateway is the closest
gateway to the source (it is on the same net as the source), the
gateway can send a message to the source to cut back on the
amount of traffic it is sending.

There could be cases in which this would not be appropriate,
for instance in a net that was lossy for reasons other than too
much traffic, but the gateway will know the characteristics of
its attached nets and can act accordingly. Also, the message
sent to the source is merely a warning and an opportunity to
obtain feedback. The source can act on it however it thinks
appropriate -- by ignoring the message, by stopping transmission
altogether, or by cutting back just a small amount, ‘awaiting
further warning messages,

The format of the warning message has yet to be defined.

L e

COSTS
3.1 Traffic

When connectivity changes, a gaz:eway sends a link-state
packet. These link-state packets ge: reported once by each
éateway to each of its neighbors. Thus if k is the average
number of neighbors per gateway in the catenet, each connectivity
change generates (k) (n) packets, where n is the number of
gateways. Link-state packets are also reported periodically, so
this results in another (k) (n) (n) packets every update interval.

Sequence-numbers packets need not be transmitted throughout
the catenet. Thus each gateway will periodically send a packet
to each of its neighbors, resulting =zgain in (k) (n) packets.

hdding on the second part of the algorithm (the flow control
part) does not increase the number of packets since the only
change in information exchange is reporting the guality of links
rather than just their existence. It could cause more traffic
because the quality of links changes more quickly than their
existence, but this should be minimizead by using the reliability
numbers as approximations, and only reporting changes above a

certain threshold.

3.2 Computation time

The only part of this algorithm that takes significant
computation time is the operation of *'ing the matrices REL and

CONN. Each sguaring step takes on ths order of (n) {n) (n)

operations (since the matrices are n X n). It is never necessary
to square the matrices more than log n (base 2) times. (Doing it
J times tells you about paths of length 27§ or less and no paths
are of length greater than n, since that would imply visiting a
gateway twice, i.e., having a loop.) Thus *'ing the matrices is
on the order of (n)(n)(n)(log n) steps. In a catenet with 30
gateways, and with the computer taking about 5 microseconds for
each step, this will result in taking about .7 seconds. This
need only be done when the matrix changes significantly.

If the .7 seconds seems unreasonably long there are many
ways of making things faster. One is to notice that in the
matrix REL, multiplications are only done to compare relative
reliabilities of minimal length paths. Therefore for each entry
(i,j) in *REL*, there are on the average only as many multiplies
as there are different shortest length paths between i and -
This will be significantly less than'n, and the .7 seconds was
based on a factor of n. More likely than the number 30 for a 30
gateway catenet would be the number 3, so the estimate of .7 can
really be as little as .87 seconds.

Another savings is to note that numbers in CONN never
decrease twice. (This is assuming the distance function is the
number of hops.) Thus on a given squaring step, you need only
compute entries equal to infinity. Since entries in REL are
computed in parallel with CONN, this reduces the computation time
on REL also. Since the entries in *REL* are only eoﬁputed when
minimal length paths are found, and not on each pass, that
reduces the estimate on the amount of work per entry in *REL* by

a factor of log n.
_2_1_

3.3 Storage

A matrix of fractions must bz kzpt, where the entry (i,j) is
the fraction of traffic destined to aods j that should be sent to
neighbor i. The fractions need conlv be B bits or less, so this
matrix could be stored in (1/2)(n) (k] 15-bit words, where k is
the number of neighbors the gateway zas.

The other matrices are each n X n. Each entry can certainly
fit into an B-bit byte, or less if s:orzge is really a problem.
There are four relevant matrices, CCYN, *CONN*, REL, and *REL¥*.
(4) (1/2)(n) (n) = (2)(n)(n) is about 22982 16-bit words for a 30
gateway catenet.

Note: It is not necessary to have a "scratch" matrix to store
intermediate results while squaring. OCverwriting entries in the
matrix will not change the result. (Though if you want to use
the trick that entries in CONN only ZJecreass once, it is
necessary to not use updated entries until you complete a pass.)

It is necessary to also storz the latest link-state packet
received from each gateway. These pzckets contain approximately
2 16-bit words for each of the gatewzy's neighbors (gateway
number and link state). Thus storacs resguired to store these
packets is about (2)(n) (k) words, whzre k is the average number

of neighbors per gateway.

T

