IEN 158 Jack Haverty
Bolt Beranek and Newman
1 Cctober 1980

KHET Formats for Internet Protocol Version 4
Jack Haverty
Bolt Beranek and Newman Inc.
October 1,1980
This IEN is intended to capture in print the formats wused

currently in the wversion 4 XNET protocol; most of the data is

courtesy of Ray Tomlinson.

Version 4 XNET is identical with version 2.5 XNET with the
exceptions 1listed below. The version 2.5 format is described in
RFC 643, It should be noted that the manner 1in which the
protocol is wused by a user program (such as the PDP10 XHET
program), and by the various target-machine XMET servers, is not
defined herein. In particular there are several problems and
heuristics in dealing with the operation of the protocol in the
internet environment, where individual packets may be duplicated,

lost, and reordered.

Changes from the version 2 formats include the following:

1} XNET header and data is embedded in & IN V4 packet instead of
a V2.5 packet.

2) Packet format changed to add Port, 3Sequence number, and
Checksum fields.

3) Change 1in asynchronous reply codes.
4) Addition of ACK bit to opcode field.

§) Positive acknowledgement of all messages.

IEN 158 Jack Haverty
Bolt Beranek and Newman
1 October 1980

Packet Format

et e T e s fa et e DS

! Fort !
L T i Lt e b e e s ittt SLoEE S
! L3B Sequence MSB !
T et e S e bt e e e &
! Checksum !
e et e e e L A e e e
! PID ICNTIACK! Opcode |
e R et e e L e s T R e s e T e L
! LSB Argument 1 MSE |
B T S e S S e T S |
! LSB Argument 2 MSB !

S T T e A e T
! !
! Data !
! !
T LT T A T T T T TS

The IN protocol is set to the XNET protocol number (17 octal}.

Host to target opcodes

DSTROY
XIOREP

Destroy (delete) a process or address space.
Reply to XI0 output (not used anymore).

XINREP Reply to XIO dnput.

DEFALL Define and allocate memory to an address space.
SAP 21 Start all processes.

SAVDSK 22 Save on disk.

GETDSK 23 Get from disk.

ENTRST 24 Enter address space into restart table.

NOP 0 No operation.
DEBUG 1 Start debugging a process or address space.
ENDBUG 2 End debugging a process or address space.
HALT 3 Halt the process.
DPOSIT 4 Deposit in memory.
RESUME 5 Resume execution of a process.
EXAM B Examine memory.
DSV Fi Deposit state vector (r0-rb,sp.pc,ps).
SETBPT 10 Set breakpoint,
REMBPT 11 Remove breakpoint.
ONESTR 12 Single step process {using trace trap).
FROCD 13 Proceed from breakpoint.
CREAP 14 Create a new process (or address space].
15
16
17
20

IEN 158 Jack Hawverty
Bolt Beranek and Newman
1 October 1980

Opcodes from target to host machine.

HALTED 77 Process halted (FREEP with arguments of 0}).
TRAFFPED 16 Process trapped due to &rror.

TTRAP 76 Trace trap.
BPT 74 Breakpoint hit.
XIOIN 73 %I0 input request.

AI00UT 12 XI0 output request.
Checksum

The checksum is the same as that for the 1IN header; ones
complement of ones complement sum of words in the packet from
Port field to last data word inclusive. In case of an odd number
of data bytes, an additional byte of zeroes is assumed for

checksum purposes.
Port number

The port number is a unique number relative. to the host
machine which appears in every packet for a particular debugging
session. It is suggested that this number be derived from the
time of day so that each session will be unique over a long

period of time.
Sequence number

The first packet of a session (first use of a particular
port number) is numbered 0. Subsequent packets increment by 1

modulo 2**16. Packets initiated by the target machine (opcodes

IEN 158 Jack Haverty
Bolt Beranek and Newman
1 October 1980

72-77) are also numbered starting from 0. The target machine is
allowed to execute packets out of order but must never execute a
packet twice wunless the effect is harmless. For example, an
examine packet should be re-executed so that the data may be
returned to the sender, Deposit or resume should not be re-
executed. The host machine is responsible for correct ordering
of c¢ritical functions. For example, it must not send a RESUME

command until all prior deposits have been acknowledged.

Acknowledgements

Each packet must be acknowledged by the receiver, An
acknowledgement consists of the original header plus any
requested data (e.g. EXAMY with the ACK bit set.
Acknnw]edgemant; are not cumulative; an acknowledgement
acknowledges only the one packet with the matching sequence
number. If the target debugger is incapable of performing the
requested function, it should set the CNT (can't) bit instead of
the ACK bit. Both bits may be set meaning that the function is

available but the data required is no longer available. This

might be the result of a duplicate packet.

