1EN ~ ¥

CMO3 SYSTEM OVERVIEW

Jerry Stern, Greg Ruth, and Jack Haverty
Bolt Beranek and Newman Inc.

January 12, 1981

Stern, Ruth, and Haverty -1- Version 1.0

IEN 164 January 1981 Preliminary

i, Introduction

CMOS is a multiprogrammed real-time operating system for
BBN's C-machines. It is essentially a reimplementation of MOS5,
(1) a PDP-11 operating system developed by SRI. Whereas MOS s
written in Macro-11 assembly language, CMOS is written in C. (2)

Programming support for CMOS s provided by the UNIX
oparating system, CMOS 1itself, as well as program modules
written to run as CMOS processes, are edited and compiled on the
UNIX operating system, and object modules are loaded into the
target machine. Since both the development and target machines
support C-based code, it 1is also feasible to do some initial
debugging in the time-shared environment.

CMOS is a small, simple operating system that provides the
following basic features:

- multiple processes

- interprocess communication/coordination
- asynchronous I1/0

- memory ﬁl]ncatinn

- system clock management,

CMOS development was motivated by the desire to produce a
C-machine operating system suitable for use in communications-
oriented applicatiens. 1In light of favorable experience with
MDS, it was decided to adapt a version of MOS for the C-machine.
The choice of C as a system programming language was dictated by
the specific nature of the C-machine. The C-machine 1is a
microprogrammed, 20-bit machine which has an architecture
explicitly designed to support the C language. The C-machine
comes in two models: +the C/50, which has a 1-megabyte (1 "byte"
= 10 bits) physical address space and no memory management; and
the C/70, which has a 2-megabyte address space and memory
management . Versions of CMOS have been developed for both of
" these machines, as well as for the L5I-11 and the ZB000.

(1) Kunzelman, R. C., J. E. Mathis, and D. L. Retz, "Progress
Report on Packet Radio Experimental Network, Quarterly Technical
Report No, 8."

{(2) Kernighan, B. W. and D. M, Ritchie, "The C Programming
Language", Prentice-Hall, Inc., 1978.

Stern, Ruth, and Haverty -2- Version 1.0

IEN 164 January 1981 Preliminary

o It should be noted that, although CMOS is targeted for use
in several applications, it has not yet been used anywhere and
should be considered as still under development.

One major motivation for the creation of CMOS was to provide
an operating system for the C machines, for use in applications
where the memory limitations make LSI-11 approaches unsuitable.
Although CMOS will run on LSI-11s, this is not an intended use.
CMOS systems may use processes which exceed the address space of
the LSI-11 architecture, and can only be run on C-machines or
other machines which support the needed memory.

The important aspects of the CMOS design are described in
the following sections. The final sections provide a detailed
description of CMOS primitives and general system generation
information.

2 General Design Considerations

The design and programming of CMOS have been motivated by
goals of style, clarity, and consistency rather than a desire to
achieve ultimate efficiency. This is not to say that efficiency
issues have been ignored. CMOS is guite compact and efficient by
virtue of its simplicity. Design principles and programming
practices have not been compromised, however, for the sake of
saving every possible byte or cpu cycle.

CMOS is designed to be an "open" operating system. This
means that no distinct division exists between the operating
system and the application program. One can view the operating
system as a collection of library routines. The operating system
can be easily extended by adding new routines and can be reduced
by excluding unneeded routines. The programmer is not confined
to the outermost interface presented by the operating system. If
appropriate, the programmer can directly access Tower-level
interfaces.

Although CMDS is intended primarily for C-machines, it is
designed to be a portable operating system. The use of a high-
level language is, of course, the principal factor in CMOS
portability. Small size and simplicity are other important
factors. The design attempts to minimize the amount of machine-
dependent code and to segregate it into separate modules. The
1/0 system design allows for easy replacement of device-dependent
modules. Versions of CMOS exist for the PDP-11 and the ZB0O0O
computers.

Stern, Ruth, and Haverty -3- Version 1.0

IEN 164 January 1981 Preliminary

CMOS does not support either virtual memory or vwvirtual
address spaces. The entire system shares a single, physical
address space. This lack of sophistication 1is due, in Tlarge
part, to the nature of real-time systems. Programs and data must
be continuously available 1im main memory in order to meet
response-time requirements. Thus, virtual memory techniques such
as swapping or paging are not suitable for real-time
applications.

The issue of virtual address spaces 1is more complicated.
The most common reason fTor providing virtual address spaces in
real-time systems is to overcome an architectural deficiency of
the computer. Many computers have small address spaces, yet can
support a much larger amount of physical memory. Therefore,
multiple address spaces are required to take advantage of larger
memory sizes.

The C-machines do not suffer from this architectural defect.
The C/50 provides a one-megabyte address space and the C/70 twice
that. This is sufficient feor all currently envisioned CMOS3
applications. For this reason, the current CMOS does not need,
and does not support, virtual address spaces. For other machines
{({e.g., the PDP-11), address space limitations are more severe.
On these machines, CMOS may be limited to a class of smaller
applications.

Other applications may motivate further extensions to CMOS3,
to dintrpduce process dsolation using memory mapping, dynamic
process creation, preemption. or other additions to the basic
functionality.

The use of a single address space. gives CMOS several
important advantages over multiple address space systems. First,
the single address space is a major contributing factor to the
overall simplicity of CHOS. Mot only is the operating system
relieved of address space management chores, but also,
programming and debugging are generally facilitated. Second,
data sharing among processes 1i5 direct, convenient, and
efficient. In multiple address space systems, memory sharing is
often a difficult problem. Third, I/0 devices have direct access
to all of memory. In multiple address space systems, I/0 devices

are typically restricted to a single address space. This often
produces a need for extra data copying, especially in connection
with DMA devices. Fourth, an entire CMOS system is Tlinked

together as one composite program. This means that non-identical
processes can still share a single copy of common subroutines.
Multiple address space systems usually cannot match this Tevel of
code-space afficiency. The large address space provided by CMOS
obviates the need to artificially split systems inte a number of

Stern, Ruth, and Haverty -4- Version 1.0

IEN 164 January 1981 Preliminary

processes because of the address space limitations.

3 Process Management

CMOS processes are defined at compilation time. They cannot
be dynamically created or destroyed during system operation. For
each process, a set of basic attributes is specified including a
name, an initial program entrypoint, and a stack size.

CMOS employs a rudimentary process scheduling method. Three
process states are defined: (1) running; (2) ready to rumn; and
{3) waiting for an event. A running process always runs to
completion. This means that the processor is relinquished only
by explicit action of the running process. It dis never taken
away by the operating system. There is no time-slicing or other
form of preemption. The next process to run 1is selected by a
simple round-robin algorithm. A1l processes have a uniform
scheduling prierity.

This non-preemptive scheduling discipline has important

implications. First, processes must be designed not to
monopolize the processor for 1long time periods. Otherwise,
crucial tasks may fail to be serviced in a timely fashion.
Second, critical program sections (i.e., program sections that

can be safely entered by only one process at a time) need no
explicit protection. The absence of preemption guarantees the
inteqrity of critical program sections.

Interrupt handling creates a separate c¢lass of critical
sections that are not protected by the scheduling discipline.
These critical sections exist only within the operating system
and are of no concern to application programs. CMOS protects
these critical sections din the standard manner (viz., by
temporarily disabling interrupts).

4 Interprocess Communication

CMOS processes communicate with one another by passing
messages known as "events". For this purpose, the cperating
system provides primitives called "signal", "wait", and "recv".
The signal primitive permits a process to send an event to
another process. The wait primitive permits 2 process to wait
for an event that may or may not have arrived. The recv
primitive permits a process to receive an event that has already
arrived.

Stern, Ruth, and Haverty -5- Version 1.0

IEN 164 January 1981 Preliminary

= An event message contains the sender process ID, an event
ID, and one word of unspecified data. The event ID s used to
indicate the type of event. Both the wait and receive primitives
allow a process to select the event IDs of immediate interest.
The meaning of the data word depends on the event type. It s
guite common for the data word to contain a pointer to a larger
data structure.

CMOS provides a facility that helps to automate event
processing activities. A process can designate a procedure to be
the event handler for a particular event type. Thereafter, the
event handler becomes active whenever a special wait primitive,
called "waith", is invoked. For each event received, waith
checks to see if an event handler has been defined. If so, the
event handler procedure is automatically dispatched. This frees
the caller of waith from the responsibility of having to deal
with events not of direct interest. Processing of these events
can be viewed as a background activity.

§ Input/Output

CHMOS provides an asynchronous I/0 facility. To perform I/0,
a process creates an I/0 request block (IORB). The IORB
identifies the target device, the type of operation (e.g., read,

write, abort), and information relevant to the particular
operation (e.g., buffer areas for data transfer). The IORB also
specifies an event ID. Te initiate processing, the IORB is

passed to the operating system. When the reguest 1is completed,
the operating system signals an event to the requesting process,
The event message contains the event ID taken from the IORB and a
data word that contains the address of the IORBE. In this way,
the requesting process can easily associate the completion event
with the original request. Status information is returned in the
I0RB.

A process can direct I/0 to a specific device or to a
special "primary” device. Primary devices are defined on a per-
process basis and can be either assigned (to a specific device)
or unassigned,. If a process attempts to perform I/0 on an
unassigned primary device, the process is suspended wuntil a
primary device 1is assigned. This permits a single device to be
moved from one process to another and thereby provides a simple
way to share a terminal among several processes,

The core of the CMOS I/0 system s a device-independent
module, "eior" (enter I/0 request), that provides a centralized
interface between the application program and the various device
driver modules. As described above, this interface accepts IORBs
from the application program. The ICORBs are automatically queued

Stern, Ruth, and Haverty -Gi- Version 1.0

IEN 164 January 1981 Preliminary

on a per-device basis. If desired, requests from different
processes can be interspersed for the same device. When a device
becomes ready to accept the next request, the first IORB in the
device queue, if any, is passed to the appropriate device driver
module.

A11 device driver modules provide a standardized interface
expected by the core I/0 system. This interface consists of four
entrypoints: (1) a configuration entry; (2) an idnitialization
entry; (3) a request entry; and (4) an interrupt handler entry.
A system configuration table specifies the driver configuration
entry for each device. During system initialization, the
configuration entry is invoked to obtain the other three driver
entrypoints, and the size of any per-device data base required by
the driver. The initialization entry 15 invoked automatically
before the first IOREB is passed to the driver. The request and
interrupt handler entries perform standard device control
functions. At present, CMOS dncludes driver modules for
asynchronous terminals and for 1822 network interfaces.

& Memory Allocation

CMOS includes routines that allocate and deallocate blocks
of memory from a free storage pool. Both the operating system
and the application program share a common pool. Three
allocation options are available to control operating system
behavior in the case of an allocation failure: (1) return an
error code; (2) wait for more memory to become available; and (3)
cease system operation.

CMOS provides an allocation mechanism only, not an
allocation policy. The policy, of course, is the responsibility
of the applicetion program. In practice, however, few
application programs incorporate a memory allocation policy that
eliminates the possibility of free space exhaustion. Instead,
some applications include a recovery mechanism to deal with this
problem. It is reasonable to expect that such a2 mechanism will
depend wupon the continued functioning of the operating system.
Therefore, the operating system must not itself Dbecome
immediately disabled as a result of free space exhaustion.

To prevent disablement, CMOS depends on "reserve stiorage
pools". A separate reserve storage pool is created for each type
of object needed by a crucial function. The operating system
uses two such pools, one for event messages and one for timer
queue entries. Reserve storage pools are managed by special
allocation and deallocation routines. The special allocation
routine first attempts to obtain space from the common pool. If
this fails, space is taken instead from the reserve pool and the

Stern, Ruth, and Haverty -7- Version 1.0

IEN 164 January 1981 Freliminary

caller is so informed. If the reserve pool is exhausted, the
system dies.

System primitives that use reserve storage pools return an
indication of when reserve storage has been tapped. An
application program can therefore detect free space exhaustion by
this means or by the direct failure of a simple allocation
request. At this point, the operating system will continue to
function for a period of time (or number of calls) determined by
reserve storage pool sizes.

7 System Clock

CMOS provides a clock management facility that maintains a
time-of-day clock and permits processes to set "alarms™. An
alarm is simply an event that is signalled by the <clock manager
after a specified time period has elapsed. Both the event ID and
the data word of the event message are specified by the process
that sets the alarm. An alarm can be either a one-time alarm or
an interval alarm that is automatically repeated at regular
intervals,

B Software Development Tools

A11 programming support for CMOS software development is now
provided by the UNIX time-sharing system, via the UNIX C compiler
and linker. BBN has developed a WVersion 7 UNIX and a C
compiler/1inker to run on the C-machines.

The same hardware configuration of a C-machine can support
both the UNIX and CMOS systems, although not simultaneously, of
course. We plan to use the UNIX system development tools to
create CMOS systems, which can them be run and tested by
bootstrapping the CMOS code in place of UNIX on the same or
different hardware.

9 Future Development

There is a variety of possible extensions to CMO3S, which
take advantage of the dncreased flexibility provided by the
hardware base, We dntend to pursue these as specific
applications arise which require additional functionality.

Stern, Ruth, and Haverty -B- Version 1.0

IEN 164 January 1981 Preliminary

The most interesting category of extensions involves the use
of the memory mapping hardware available for C machines. In the
standard C-machine configuration, the 20-bit address space
provides access to a physical memery of 1 Mbyte.

Within this physical address space, processes can share any
or all of the memory, since the process address space is5 also 1
Mbyte. j

The memory mapper hardware extends the machine's

capabilities in two ways. The first extemsion provides for
support of 2 Mbytes of physical memory. Each process is,
however, 1imited to 1 Mbyte of address space. The second

extension 1ies in the ability of the memory map to support eight
independent active process maps. This creates an environment in
which processes can share portions of their address spaces with
the system or other processes, with fast context switching
between the eight active processes, This removes two of the
basic 7limitations we have encountered in real-time designs based
on PDP-11 architectures, namely, the granularity of memory
sharing and the speed of context switching.

The CMOS environment has not yet been extended to utilize
these additional facilities, although we anticipate that this
effort will begin soon.

10 CMOS System Calls

This section describes CMOS system calls available to the
application programmer. These calls are divided into two major
groups, low-level functions and higher-level functions. The
Tow-level functions correspond roughly to the MOS interface, and
the higher-level functions provide certain additional
capabilities. The wusage of each system call 1is described in
terms of the C language. Two typedefs are first defined and then
referenced by a few of the system call descriptions.

typedef struct { /* event message buffer */
char msevent; /* gvent ID */
char mssender; /* sender process ID */
int msdata; /* user data */

1 MSG;

Stern, Ruth, and Haverty -g- Version 1.0

IEN 164 January 1981 Preliminary

typedef struct iorb { /* 1/0 request block */
struct iorb *irnextp; /* ptr to next IORB on chain */
int irdevid; f* device ID */
char irevent: /* completion signal event */
char irpid; /* requestor's process ID */
char *irbufp; /* buffer ptr */
char irport; /* port number of request */
char iropcode; /* operation code */
int irbufsiz; /* buffer size (in bytes) */
int irstatus; /* status of I/0 operation */
int irnxfer; /* number of bytes transferred *=/
int irpad[2]: /* mysterious padding */

} IORB;

Stern, Ruth, and Haverty -10- Version 1.0

IEN 164 January 1981 Preliminary

- LOW-LEVEL FUNCTIONS

Process Attributes

Name: getpid
Function: convert process name to process ID
Usage: pid = getpid (name)

char name[]; /* process name to convert
null name => calling process */

int pid; /* process ID for given name */
Name : getpn
Function: convert process ID to process name
Usage: pn = getpn (pid, namep})

int pid;- /* process ID to convert

0 =» calling process */
char *namep; /* place to store name */
char *pn; /* same as namep */

Name: getprio
Function: get primary 1/0 devices of specified process
Usage: getprio (pid, priop)

int pid; /* process ID, 0 => calling process */
struct {

int idevid; /* primary input device ID */

int odevid; /* primary output device ID */
} *priop;

Stern, Ruth, and Haverty -11- Version 1.0

IEN 164 January 1981 Preliminary

Name : setprio

Function: set primary I/0 devices of specified process

Usage: setprio (pid, idevid, odevid)
int pid; /* process ID, 0 => calling process */
int idevid; /* input device ID, <0 => no change */
int odevid; /* output device ID, <0 => no change */

Name : movprio

Function: move primary I1/0 devices of caller to another process
Usage: movprio (pid)

int pid; /* target process 1D */

Device Attributes

Name: getdid

Function: convert device name to device ID

Usage: devid = getdid {name)
char name[]; /* device name to convert */
int devid; /* device ID */

Name: getdn

Function: convert device ID to device name
Usage: dn = getdn {devid, namep)

int devid; /* device ID to convert */
char *namep; /* place to store name */
char *dn; /* same as namep */

Stern, Ruth, and Haverty -12- Version 1.0

IEN 164

January 1881 Preliminary

Input/Output
Name : gior
Function: enter an I/0 reguest

Usage:

ec = ejor (iorbp)

IORB *iorbp; /* I/0 request block ptr */
int &c; /* error code */

Interprocess Communication

Name:
Function:
Usage:

Name :
Function:
Usage:

Name :
Function:
Usage:

signal
signal an event to a process
sw = signal (pid, event, data)

char pid; /* target process ID */

char event; /* event number */

int data; /* data for target process */

int sw; /* 1 if reserve pool used to queue

signal, else 0 */

wait
wait for any event
wait (msgp)

MSG *msgp; /* ptr to message buffer */

waits
wait for a single specified event
waits (event, msagp)

char event; /* desired event */
MSG *msgp: /* message buffer ptr */

Stern, Ruth, and Haverty -13- Version 1.0

TIEN 164

Kame:
Function:
Usage:

Name:
Function:
Usage:

Name :
Function:
Usage:

Name :
Function:
Usage:

January 1981 Preliminary

waitm
wait for one of multiple specified events
waitm (evlist, nev, msgp);

char *evlist: /* event 1ist (array) */

int nev: /* number of events in 1ist */
M5G *msgp; /* message buffer ptr */
recv

receive any pending event
sw = recv (msgp}

M3G *msgp; /* ptr to message buffer */
int sw; f* 1 if event returned, else 0 */
recvs

receive a single specified pending event
sw = recvs (event, msgp)

char event: f* desired event */

MSG *msgp: f* message buffer pir */
int sw; f* 1 if event returned, else 0 */
recvm

receive one of multiple specified pending events
sw = recvm (evlist, nev, msgp):

char *evlist; /* event 1ist (array) */

int nev: /* number of events in list */
MSG *msgp; /* message buffer ptr */
int sw; /* 1 if event returned, else 0 */

Stern, Ruth, and Haverty -14- Version 1.0

IEN 164

January 1981 Preliminary

Memory Allocation

Name :
Function:
Usage:

Name :
Function:
Usage:

Name:
Function:
Usage:

Name:
Function:
Usage:

alloc
allocate memory block, return if not available
blkp = allec (nbytes)

int nbytes; /* size of block desired */
char *blkp; /* ptr to allocated block, else null */

allocw
allocate memory block, wait if not available
blkp = allocw (nbytes)

int nbytes; f* size of block desired */
char *blkp; /* ptr to allocated block */

allocd
allocate memory block, die if not available
blkp = allocd {nbytes)

int nbytes; /* size of block desired */
char *blkp: /* ptr to allocated block */

free
free a previously allocated block
free (blkp)

char *blkp; /* ptr to block */

Stern, Ruth, and Haverty =16~ Version 1.0

IEN 164 January 1981 Preliminary

System Clock Management

Name: alarm
Function: set alarm to awaken process
Usage: sw = alarm (event, data, delay)
char event; /* signal event ®/
int dats; /* signal data */
int delay;: /* timeout period in seconds/G60 */
int sw: f* 1 if reserve pool used to gueue
Name : ialarm
Function: set alarm to awaken process at regular intervals
Usage: sw = ialarm (event, data, interval)
char event; /* signal event */
int data; /* signal data */
int interval; /* timeout interval in seconds/ /60 */
int sw; f* 1 if reserve pool used to gueue
Name: kalarm
Function: kill any specified pending alarms
Usage: kalarm (event, data)
char event; /* event of requests to kill */
int data; /* data of requests to kill *=/
Name : setod
Function: set time of day
Usage: setod (time)
long time; /* time of day */

Stern, Ruth, and Haverty -16- Version 1.0

IEN 164 January 1981 Preliminary

Name : getod
Function: get time of day
Usage: time = getod ()
long time; /* time of day */

Stern, Ruth, &nd Haverty -17- Version 1.0

IEN 164

January 1981 Preliminary

HIGHER-LEVEL FUNCTIONS

Event Management

Name : newev
Function: generate a new event number, unique system-wide
Usage: event = newev ()}
char event; /* event number */
Name : setevh
Function: associate an event handler routine with a specified
gevent for this process
Usage: oldent = setevh (event, entryp)
char event; /* event to be handled */
int (*entryp) ():; /* event handler entrypoint */
/* if null, cancel event handler */
int (*oldent) (); /* previous entryp, else null */
Wame : waith
Function: wait for an event; dispatch event handler if one
is defined, else return.
Usage: waith (msgp)
MSG *msqp; /* ptr to message buffer */
Name : waitsh
Function: wait for an event; dispatch event handler if one is
defined; else return if event is the one specified;
else ignore event;
Usage: waitsh (event, msgp)
char event; /* desired event */
MSG *msgp; /* message buffer ptr */
Stern, Ruth, and Haverty -18- Version 1.0

IEN 164

January 1981 Preliminary

Synchronous Input/Output

Hame :
Function:

Usage:

Name :
Function:

Usage:

read

read from a specified device; event handlers are
active while awaiting read completion.

nbytes = read (devid, bufp, bufsiz)

int devid; /* device ID %/

char *bufp; /* buffer ptr */

int bufsiz; /" buffer size "/

int nbytes; /* number of bytes read */
write

write to a specified device; event handlers are
NOT active while awaiting write completion.
nbytes = write (devid, bufp, bufsiz)

int devid; /* davice ID */

char *bufp; /* buffer ptr */

int bufsiz; /* buffer size */

int nbytes; /* number of bytes written */

11 System Generation

The following CMOS modules must be linked dinte any system
configuration:

cm_init Initialization routines.

cm_data Process control and configuration tables.
em_util CMOS uwtilities.

tm_err Error message routines.

cm_proc Basic process management routines.
cm_queue Queue manipulation routines,

cm_ipec Interprocess communication routines,
cm_mem Memory management primitives.

Stern, Ruth, and Haverty -19- Versian 1.0

IEN 164 January 1981 Preliminary

cm_io Basic I/0 routines.

In addition to the required modules, the following optional
modules may be included for specific hardware device support:

cm_time Timer management routines,

cm_tty Terminal driver routines (to be rewritten).
cm_1822 1B22 driver routines (to be written).
em_smd Disk driver routines (to be written).
cm_mlc MLC driver routines {to be written).

In order to inciude DDT the following modules must be included:
ddt _main
ddt_cmd
ddt_code
ddt_brk

ddt_sym

Stern, Ruth, and Haverty -20- Version 1.0

IEN 164 January 1981 Freliminary

References

1. Mathis, J. and Klemba, K., "The Micro Operating System,”
Chapter 6 of Terminal Interface Unit Notebook, Vol. 2, SRI
International, March 1980, <MOS reference>

2., Kraley, M. et al., "Design of a User-microprogrammable
Building Block.” Thirteenth Annual Workshop on Microprogramming,
Colorado Springs, Colorado, 1880,

3., FRitchie, D.M. &and Thompson, K., "The UNIX Time-S5haring
System,” Bell System Technical Journal &7(6) pp. 1905-1929
(1978).

4, Kernighan, B.W. and Ritchie, D.M., The C Programming Language,
Prentice-Hall, Inc., 1978.

Stern, Ruth, and Haverty -21- Version 1.0

IEN 164 January 1981 Preliminary

. APPENDIX

CMOS Error Messages (C-machine version)

cvdevnm: Device not found
The mate specified for a device (in the device control table
initialization data) is not the name of any existing device.
getdcte: Bad device ID
The CMOS primitive (e.g. eior, getdn) was called with an
invalid device 1id.
divrmsg: NULL msg ptr

Due to an internal error (blush).

mkroom: Memory full
Insufficient space in the free memory pool to accommodate
device driver data and/or process stacks during system
initialization.

alloc: Invalid reqguest
The CMOS primitive "alloc” has been called with a negative
block size.

free: Invalid addr
The CMOS primitive "free" has been called with a pointer
cutside the free memory pool.

allocd: Allocation failed
An allocation request via the CMOS primitive "allocd" has
failed.

plalloc: Pool empty

The reserve memory pool has been exhausted.

Stern, Ruth, and Haverty =i Version 1.0

IEN 164 January 1981 Preliminary

dschd: Stack overflow
A process has overrun its stack. This may be due to an
excessive depth of nested procedure calls. The only
solution is to reassemble the system with more stack space.
getpcte: Bad pid

A CMOS primitive was called with a non-existent process id.

mktge: Bad delay time

A CMO5 clock management primitive was given a timeout period
of 0 by the caller.

In addition, there are various fatal conditions trapped by CMOS:
TRAP: invalid memory addr
TRAP: il1legal instruction
TRAP: il1legal micro call
TRAP: privileged operation
TRAP: register overflow
TRAF: EDAC error
TRAP; register underflow

For every trap the following machine status wvalues are printed
out:

PC = program counter
PS = program status

5P = stack pointer

Stern, Ruth, and Haverty -23- Version 1.0

