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ISSUES IN INTERNETTING

PART 4: ROUTING

4. Routing

This is the fourth in & series of papers that discuss the
issues dnvolved 1in designing an internet. Familiarity with the

previous papers (IENs 184, 1B7, and 188) is presupposed.

The topic of the present paper is routing. We will discuss
the issues involved in choosing 2 routing algorithm for the
internet, and we will propose a particular algorithm, The
algorithm we propose will be based on the routing algorithm
currently operating in the ARPANET, called "SPF routing.” This
algorithm is described in [1] and [2]. which interested readers
will certainly want to look at. Although we will try to make
this paper relatively self-contained. we will of course focus our
discussion on those aspects of the algorithm which might have to

be modified to work in the internet.

Any discussion of the proper routing algorithm to use in a
particular Network Structure must begin with 2 consideration of
just what characteristics we want the routing algorithm to have.
That s, we must decide in advance just what we want the routing
algorithm to do. Ewveryone will agree that the routing algorithm
pught to be able to deliver data from an arbitrary source Switch

to an arbitrary destination Switch, as Tlong as there 1is a



IEN 189 Bolt Beranek and Wewman Inc,

Eric C. Rosen
physical path between them. Or at least. the routing algorithm
should mzke the probability of being able to do this arbitrarily
high. However, this is & very minimal criterion (as indicated by
the fact that everyone would agree to it). There are many other
requirements we must place on the routing algorithm if we intend
to design a robust and high performance Network Structure. We
will present some requirements &and sSome possible routing
algorithms which fulfill the requirements to & greater or lesser
degree. We hope that by the end of this paper, we will have made
a2 case that our proposed routing algorithm does a better job of
meating more of the desired requirements than does any other that

we know of.
4.1 Flexibility and Topological Changes

One extremely important, though Tittle noticed. feeturellhat
we should require of & routing &lgorithm is that it snable us to
make arbitrary changes in the topology of the Network Structure.
without the need to meke manual changes in the internal tables of
the Switches. This is a capability that has always existed in
the ARPANET. IMPs can be added, removed, or moved around
arbitrarily, and the routing algorithm automatically adapts to
the new topology without any manual intervention. This seems
simple enough, but it does place some significant constraints on
the nature of the routing algorithm. For example, it immediately

rules out fixed routing. By "fixed routing,” we refer to any
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scheme where a set of routes to each destination Switch is
"compiled into" each Switch. In fixed routing schemes, there is
generally a “primary route”, to be wused when the MNetwork
Structure is not suffering from any outages, and a set of
alternate or secondary routes to be used if some component of the
primary route should fail. We know of one network which does use
this sort of fixed routing. and as & result, they are forced to
adhere to & very strict rule which allows them to add or remove
Switches only once every s$ix months. Certainly, we would not

want to build such a restriction into the internet.

Fixed routing &lso prohibits certain important day-to-day
operationgl procedures that are often used in the ARPANET. For
gxgmple. it is quite common, when an IMP 1is brought down for
prezventive maintenance. to "splice” that IMP out of the network
by wiring together two of its modems. This causes two IMPs that
ordinarily have & common neighbor to suddenly become direct
ngighbors of each other, (A similar function can &lso be
performed by the telephone company, 1in case the power to the
modems is shut off., or if the site cannot be reachad.) This
ability to preserve network bandwidth even when a site is down is
guite important to robust network performance. Yet it is very
difficult, if not 1mpas§ib1a. to do this if the network has &
fixed routing algorithm. It is not yet clear to what extent such
day-to-day "firefighting"” techniques will be applicable in the

internet, but it certainly does not seem wise to design an
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internet routing algorithm which would be too inflexible to

permit the use of such technigues.

Another very useful capability which is difficult to combine
with fixed routing 1is the =&ability to creagte arbitrarily
configured test networks in the lab, and then to connect them to
the real network. This is something that is done quite often in
the ARPANET. wusually for the purposes of testing out new
software., and we will definitely need this capability in the
internet in order to test out new gateway software (as well as 1o

test out patches and bup fixes to the old).

It is also worth noting that implementing & scheme of fixed
routing with a2 primary route and alternates to be used in case of
outzges is not nearly as trivial as it may seem. Remember that
it 1is not enough for each individual Switch, when its Pathway to
2 particular neighbor fails, to pick an alternate neighbor as its
next hop to some destination. Rather. 2ny outage requires ALL
the Switches to pick alternates in a COORDINATED MAMNER. so that
the routing produced by the wuse of the alternate paths i5
loop-free. This is quite a difficult problem, and if there are &
large number of Switches and Pathways, any combination of which
could fail, this means that a wvery large number of alternate
paths must be maintained, requiring a consequently large amount

of table space.
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We will not be giving much serious consideration to the wuse

of fixed routing in the internet. We mention it largely for the
sake of completeness. and because there is a natural tendency,.
which we wish to oppose, to suppose that fixed routing must be
simplar, cheaper and more reliable than dynamic routing. This
tendency ignores the day-to-day operational problems involved in
the use of fixed routing, as well as the difficult technical

problems involved the the creation of fixed routing tables.

Preserujng maximum flexibility to mzke topological changes
requires the Switches to be able to determine, dynamically. just
who their neighbors are. (Remember that two Switches of a
Network Structure are neighbors if and only if they are connected
by & Pathway, 1i.e., by & communications path containing no
intermediate Switch of the same MNetwork Structure.) In the
ARPAMET, each IMP is dinitialized to know how many modem
interfaces it has, and does not determine that dynamically.
However, initialization only tells the IMP how many interfaces it
has; it does not tell the IMP who its neighbor is ower each
interface. The IMPs determine who their neighbors are
dynamically, wia the line up/down protocol, and & line between
two IMPs cannot come up unless and until each of the IMPs kKnows

the identity of the other.

The situation in the present Catenet gateways s quite

different. Each gateway has a table of potential neighbors
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“assembled in." When a gateway comes wup. it attempts to
communicate (via & special gateway neighbor protocol) with each
of the gateways in 1its pre-assembled neighbor table. Two
gateways are considered neighbors only if this communication is
successful. Gateways will also consider themselves neighbors of
other gateways that communicate with them according to the
gateway neighbor protocol, even if the other gateway is not in
the pre-a%semb]ed neighbor table. This means that two gateways,
Gl and G2. cannot become neighbors unless either G1 is in G2's
pre-assembled neighbor table. or G2 1is in Gl's pre-assemhled

neighbor table.

Of course, in & real operationagl environment, it 15 very
important to ensure that site-dependent dinformation 1is not
gssembled or compiled in., Rather. it must be separately loadable
{over the network itself) by the MNetwork Control Center, or
whatever equivalent organization we create for operating the
internet. In fact. site-dependent information ought to be
preserved over reload of site-independent information. and vice
versa. (This discipline is followed in the ARPANET.) Designing
the gateways - according to this discipline is a very non-trivial
task, which must be planned for by the gateway designers at the
earliest stage of gateway design. Otherwise, we will build for
purselves a very difficult set of wunnecessary operational

problems.

—
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However, it is not a'uery good idea to have a fixed table of
neighbors 1in each Switch, even if this table is separately
loadable. This just does not give us the flexibility we desire
for making arbitrary topological changes. If there has not yet
been any difficulty with the Catenet's current scheme, that is
probably because of the small number of gateways and component
networks in the current internet environment. As the number of
gateways increases, the need to have them dynamically determine

who their neighbors are becomes increasingly meore important.

However, having gateways discover (dynamically) who their
neighbors are is a more difficult problem than having IMPs
discover who their neighbors are. The dinterfaces on the IMFs
function as point-to-point lines, so there can be at most one
other IMP on the other end of a 1ine, and &ny data sent out that
1ine can be expected to reach just that IMP. Tharefore it is not
very hard for an IMP to discover which IMFP is at the other end.
An IMP simply sends its identity (& unique number which it reads
from 1its hardware configuration cards) down the 1line in a
message, and if the line is operational, the message must reach
the IMP on the other end. For two gatewzys connected by a
packet-switching network, the problem is more complicated,
because, unlike te1ephuﬁe circuits, a packet-switching network is
not a point-to-point line with a relatively transparent
interface. In order for one gateway to identify itself to
another. it must be able to address the other. using the Access

- 7 =
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Protocol of the packet-switching network which serves as the
Pathway between them. This seems to mean that for a gateway to
be able to send its identity to & neighbor, it must already know
the neighbor's name. This seems like Catch-22 -- there 15 no way
to determine dynamically who your neighbor is. unless you can
address him, but there is no way to address him wunless you

glready know who he is.

This problem can be made more tractiéble through the
copperation of the packet-switching networks wunderlying the
Pathways which connect the gateways. A packetFSwitchiné network
could recognize that certain of its own components (which might
ke either Switches or Hosts within its own Network Structure) are
alsoc Switches within a Network Structure which is one level
higher in & hierarchy. For example. in the ARPANET. there might
be some special protocol (call it the “pateway discovery
protocol"). carried out on the host-IMP level. by which certain
hosts identify themselves as internet gateways. Whenevar a
gateway connected to a particular IMF comes up or goes down, this
information could be broadcast to all other IMPs. Whenever a
gateway comes up, the IMP it is connected to could tell it which
of the other hosts are internet gateways. In this way, the IMPs
could keep the gatewafs informed as to which other gateways are
up or down at anpy particular time. This sort of scheme
gliminates the need for the gateways to know in advance who their
neighbors might be, and moves the responsibility for keeping

= B =
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track of the gateways and their up/down status to the
packet-switching network itself, which 1is better equipped to

carry out this responsibility.

Such a scheme would not be very difficult, in principle, to
build into the ARPANET. Information about gateways could be
subsumed into the routing information. That is, an IMP connected
to a gateway could represent the gateway as a stub node. and
rgport on” it as such in 1its ordinary routing updates. (Of
course, this is only feasible if the number of gateways is
relatively small when compared to the number of IMPs. Otherwise
the additional overhead this would add to the ARPANET s internal
routing algorithm would meke the scheme infeasible. However, it
does seem 1ikely that the number of gateways on the ARPANET will
glways be much smaller thién the number of IMPs.} This scheme
would automatically cause the information zbout the gateways to
be broadcast to a1l IMPs as part of the routing updates. (See
section 4.5 for a description of the routing updats procedure.)
Each IMP which is connectad directly to a gateway could forward
information about other gateways to 1its own geateway as the
information 1is received. The most difficult problem might be to
get enough "security” in the gateway-to-IMP protocol so that only
real gateways could declare themselves to be gateways. (Some of
the dissues involved in preventing a host from "fooling" the
network into thinking it is a different host than it really is
are discussed in IEN 1B3. See the discussion of LAD messages.

- 0 -
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However, that note does not consider the real issue of security

that arises here.)

This scheme for having gateways dynamically discover their
ngighbors through the cooperation of the networks underlying the
internal Pathways of the internet is an important step towards
the solution of the "flying gateway" problem. The flying gateway
problem is the following. Suppose thet N is & packet-switching
network whiich is one of the component networks of the internet.
Now suppose ;hat due to some sort of emergency or natural
disaster. N becomes partitioned into two “pieces”. call them N1
and N2, and that this partition 1is expected to 1last for a
significant amount of time. If H1 is a2 Host in N1. and HZ is a
Host in MZ, then H1 and HZ will no longer be able to communicate
through the network N. (Of course, Hl &nd H2 might still be able
to communicate though the internet. if there is an internet
gateway on N1 and an internet gateway on N2, and & routs between
these two gateways other than the "direct” route via N. In fact.
the addressing scheme proposed in 1EN 188 will automatically
cause traffic from H1 to H2 to be delivered over this alternate
route, AS LONG AS H1 SUBMITS THIS TRAFFIC TO ONE OF THE INTERNET
GATEWAYS COMMECTED TO N1, RATHER THAN TRYING TO SEND IT DIRECTLY
TO H2 OVER THE NETWORK MN.) However, in some cases., there may be
no such alternate route, or else 1its characteristics might be
unsatisfactory. In addition, it must be remembered that the
partition of network N might actually result in the partition of

_1|:|-
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the internet itself, so that some pairs of Hosts which ordinarily
communicate over the internet cam no longer reach each other. In
such cases, it might be desirable, at the level of the internet,
to treat N1 and N2 as separate component networks, and to place
an internet gateway between them so that internet traffic can
flow from N1 to N2. One possible scenario is for this new
gateway to be an airborne packet radio, hence the name “"flying

gateway."”

If & flying gateway can be connected to both N1 and NZ, and
if the network N has a gateway discovery protocol of tﬁe sort we
have been advocating. then the flying gateway need merely come up
on N1 aznd N2. declaring itself to be an internet gateway. The
gateway discovery protocol run in the network pieces N1 and N2
will cause the other internet gateways in N1 and N2 to become
awara that they have a new neighbor, the flying gateway. Once
the gateways in N1 and N2 become aware of their new neighbor, it
automaticelly begins to participate in the routing algorithm (see
section 4.5 for details of the routing updating algorithm that
brings this about), and routing automatically begins to use the
flying gateway for store-and-forwarding internet traffic. Thus

any partition of the internet is automatically brought to an end.

In addition to using the flying gateway as & transit or
intermediate gateway for internet traffic, it may also be

desirable to use it as a destination Switch d9n the internet.
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That is, it may be desirable to allow the other internet Switches
(pateways) to use the flying gateway as the address to which they
route traffic for Hosts 1in N1 or NZ2. This is slightly more
complicated than simply wusing the flying ogateway as an
intermediate Switch. The logical-to-physical address translation
tables 1in the gateways (we are assuming the addressing scheme
proposed in IEN 1BB) will not, imn general, map any Host Tlogical
addresses into the address of the flying gateway, which after all
is not ordinarily on the dinternet. However, as long as the
flying gateway indicates that it is a special, flying, - gateway,
and as long as this information is made known to 211 the other
gatéeways, this problem is simple enough to solve. e e
flying geteway, and G s an ordinary gateway, and F and G are
neighbors. then any logical address which maps to G but cannot
currently be reached through any ordinary gateway should be
mapped to F, (As we shall see, the routing &lgorithm we propose
makes aveilable to each Switch all information about which pairs
of Switches are neighbors.) Attempting to rezach the destination
Host wvia the flying gateway F will either be successful, or else
should result in the return of a DNA message., which would
indicate that the Host cannot be reached from the flying gateway
gither. The only remaining problem is for the flying gateway
itself to determine which of the two pieces of the partitioned
network contain some perticular Host for which it is the

destimation Switch. Any data f{or destinztion Host H which

= ld =
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arrives at Switch F can potentially be sent to either piece of
the partitioned network. The situation is no different than the
problem of how an ordinary gateway. which has two Pathways to a
particular Host, one of which is non-operational, decides which
one to use. MNote that the individual Hosts do not need to be
aware .at a1l of the existence of the flying pateway. since the
logical eddressing scheme automatically finds the right physical
address. _Df course, for this mechanism to be at all effective,
there must be & robust and efficient Host-Switch up/down
protocol, which works through the cooperation of the network

underlying the Pathway between Host and Switch.

Unfortunately, not every component network of an internet
can he expected to cooperate this way in a "gateway discovery
protocel.” In fact, if two 3Switches of the internet Network
Structure are connected by & Pathway which is itself an internet.
rather than a single packet-switching network. then this sort of
cooperation 1in the “"gateway discovery protocol” might be
extremaly difficult if not dimpossible. It seems though to be
quite important to get the communications media which underlie
the Pathways to participate 1in such a protocel, for that
significantly increases both the reliability and the flexibility
of the internetting scheme. It does not seem possible for
Switches which are connected by uncooperative Pathways to
determine dynamically who their neighbors are. In such cases, we
may then have to live with hand=-built neighbor tables (as in the

_'13_
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present Catenet), and a protocol which the Switches attempt 1o
carry out with their neighbors to see which potential neighbors
are really reachable. MNetworks which do not provide a gateway
discovery protocol, however, cannot be patched together with a

flying gateway if they should partition.

Even for Switches which are connected by cooperative
Pathways. it is desirable to have & protocol which the Switches
attempt to " run with each one of their neighbors, to see whether
they really can send and receive datz to or from each neighbor.
Suppose, for example, that two Switches are connected by &
Pathway which 1is a wvery congested network. In such & network,
the messages which are used to tell the dinternet Switches who
their "neighbors” aré might well be flowing. even though the
congestion prevents ordinary (user) data from flowing. This is
not at all unlikely. if the gateway discovery protocol mzkes use
of the network's routing updates, which would probably be of much
higher priority than ordinery data packets. S5ince we don't want
to use this Pathway for internst traffic unless it can carry
data, some independent means of determining this may be needed.
The situation is somewhat more complicated if the Pathway is a
packet-switching network with different "acceptance classes”, S0
that only certain classes of traffic are accepted at any given
time, depending perhaps on the internal loading conditions of the
network. If a Pathway is only accepting a certain sub-class of
data traffic, any internet Switches which are connected to that

_14_
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Pathway must be able to determine which <c¢lasses are being
accepted (presumably the network wunderlying the Pathway will
inform the Switches as to any access restrictions), and this
information will have to be fed back into the internet routing
algorithm, so that traffic which cannot be placed on a certain

Pathway is not routed there nonetheless.

The reader will doubtless have noticed +that these
considerations, of determining who one’s neighbors are, and of
determining whether the Pathway to each neighbor is operational,
gre guite similar to the considerations adduced in IEN fE? in the
discussion of Pathway up/down protncols to be run between a Host
and a Switch. What we have been discussing 15 really an
intér-Switch Pathway up/down protocol. The gateway discovery
protocel corresponds to what we called a "low-level up/down
protocoel™. and the type of protocol discussed in the previous
peragraph corresponds to what we called the "higher-Tlevel up/down

protocol.”
4.2 Why We Cannot Require Optimality

What else would we 1ike the routing algorithm to do, besides
giving wus the maximum flexibility to make topological changes?
Generally, we tend to féeI that a really good routing algorithm
should optimize something, delay or throughput, for example,.
However, true optimality is really not possible. If we are given
& complete description of & network., dncluding its topologicai

_15_
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structure, and the capacities and speeds of all its lines and
switches, and if we are also given the traffic requirement (as a
Switch-Switch traffic matrix which tells us how much traffic each
Switch will originate which is destined for each other Switch).
and if the packet inter-arrival rates and sizes vary according to
certain specific probabilistic distributions. and if the traffic
s in & steady-state condition. it is just a mathematical problem
to devise a set of routing tables for the Switches which will
minimize the network average delay. Applied mathematicians have
devoted & great deal of effort to devising algorithms to produce
this optimal solution. There are a large number of problems with
attempting to use this sort of “optimal routing algorithm” as

the operztional routing algorithm of & network:

1) Packet arrival rates and sizes do not necessarily wvary
according to the probabilistic distributions which zre

assumed by optimal routing algorithms,

2) Optimal routing algorithms are ALWAYS based an
mathematical models of the relationship between delay and

throughput which are not supported by empirical data.

3) Actual traffic requirements are quite variable, and may
not really apﬁrcach a8 steady-state for a long enough
period of time to enable true optimization, Traffic
requirements are also generally unknown. and difficult to

predict or measure.
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4) Most algorithms to compute the optimal routes are real
numbe r crunchers, and require large floating point
computers. These algorithms would have to be run in a

central location, producing routing tables for all
Switches, and then distributing them somehow (centralized
routing), with consequent problems of robustness and

overhead.

5) There are distributed optimizing algorithms (e.g.,
Ga]];gar's algorithm), but they are not implementable.
That is, the proofs of these algorithms make assumptions
which could not be made to hold in the real software and
real hardware of a2 real network, Hence the &lgorithms
would not be expected to give optimal results (or even
gnything close to  optimal} in real networks,
Furthermore. such algorithms seem to rely on updating
protocols which are insufficiently robust in the
cperational environment. These algorithms also seem to
contain parameters whose precise settings are quite
important to propér performance, but whose most
appropriate values are unknown and quite difficult to

determine.

We realize that these rather brusque comments may make it
seem like we are giving short shrift to the consideration of
pptimizing algorithms. We have made these comments simply in

_1?_
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order to state our reasons for not giving further consideration
to such algorithms. Arguing in support of these reasons,

howeaver, would require another paper.

Another problem with optimal routing algorithms which is
more specific to the internet environment has to do with the
requirement that the capacities of the network components be
known. With telephone circuits as the "links”, it is possible to
assign a "fixed capacity and fixed propagation and transmission
delays to ea;h Tink. With packet-switching networks as the
"links", it dis doubtful +that this even makes sense. If two
gateways are connected by the ARPANET, there is no number we can
assign as the capacity of the "1ink” connecting the gateways!
The amount of throughput that can be sent between two gateways
via the ARPANET is & highly variable guantity. with dependencies
on hundreds of other things coing on within the ARPANET, ToRls
hard enough to get & handle on just what other things the
throughput of a given connection depends on: we certainly can't
express this dependency as a function, or assign numerical values
to the “capacity.” This seems to mean that currently known
optimal routing algorithms are really guite wuseless within the
context of the internet. Of course, they are not too useful even
in individual networks, when considered as the operational
routing algorithm of the network. They are, however, sometimes
useful as a benchmark to which the operational routing algorithms
can be compared. That is. it is & meaningful Question to ask,

-IB-
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"how close does SPF routing in the ARPANET come to optimal?”,
where "optimal" dis defined as the result produced by some optimal
algorithm, run off-line. Within the context of the internet, it
is difficult even to give meaning to this question. There is no

mathematical model of the internet to which we can appeal.

This also raises an interesting question about the design of
the dnternet topoleopy., i.e.. where to place the gateways and how
best to interconnect them. The usual mathematical techniques for
trying to optimize network topological design alse assume some
fixed assignment of capacity to the links; it's not obvious how

such techniques can be extended to the internet.
4.3 Some Issues in SPF Routing

gven if we give up the guest for pptimal routing, there are
5ti11 2 number of substantive things we can require of a routing
algorithm. For example, we would 1ike to heave some form of
distributed routing. rather than centralized routing, simply for
reasons of robustness. ("Distributed routing” refers to any
routing scheme 1in which each Switch computes its own routing
table.) What this means basically is an algorithm based more or
less on the routing algorithm of the ARPANET, i.e., an algorithm
which runs in each Switch and computes the shortest path to each
other Switch, based wupon (dynamically determined) knowledge of
the connectivity of the internet HNetwork Structure, and an
assignment of “length™ to each Pathway that connects two

_19_
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Switches. Routing algorithms of this sort can be characterized
by three separable components: (a) the algorithm used to compute
the shortest path, given the assignment of lengths to Pathways.
{b) the algorithm used te assign a Tength to a given Pathway. and
(¢) the protocel wused by the Switches for sharing routing

information,

The most efficient shortest path algorithm that we know of
is the SPF &lgorithm of the ARPANET [1,3] (which is basically
just 2 modification of Dijkstra's shortest path algorithm), and
we propose to base an internet routing algorithm on thié, There
are other algorithms for performing & shortest path computation,
but the SPF algorithm seems to dominate them. One possible
alternztive to SPF would be something based on the distributed
computation of the original ARPANET routing algorithm (which is
the besis for the current Catenet routing). but we have studied
that algorithm at great length and in great detail and it is
inferior to SPF in a large variety of ways [3]. There are many
other shortest path algorithms (such as Floyd's &lgorithm, or the
algorithm advocated by Periman in IEN 120), but the efficiency of
these algorithms does not compare with that of SPF. We will not
consider the issue of choosing a shortest path algorithm any

further.

In the ARPANET, the "length” assigned to & line is just the

average per-packet delay over that line during & preceding pericd
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of ten seconds. The current Catenet routing algorithm assigns a
length of 1 +to each Pathway, irrespective of the delay. Other
possible assignments of lengths to Pathways are also possible.
We will recommend the use of measured delay as the best metric
for the internet routing algorithm to use, and we argue for this
proposal in  sections 4.3.1 and 4.3.3. Section 4.3.2 covers the
related topic of "locad splitting.” (One purpose of that section
is to sh?w that the two topics are indeed related. and in ways
more subtle than generally realized.) Inm section 4.4, we discuss
some of the issues in the design of an algorithm to measure the

delays.

In the ARPANET, a routing update generated by &n IMP A
specifies the average per-packet delay on each of A's outgoing
lines. Every update generated by an IMP is sent to every other
IMP in the network. not just to the nsighboring IMPs. as in the
Catenet routing algorithm, This wupdating protocol, and its

applicability to the internst, are discussed in section 4.5,

Although & routing scheme cen be divided inte a number of
separable components, it 1is important to keep in mind that the
ultimate characteristics of the routing scheme will result from
the combination of the components. A routing scheme must be
judged as a whole. The reader should try to focus throughout on
how +the components work together. and resist the temptation to

judge each component separately.

_.21..



IEN 18D Bolt Beranek and MNewman Inc.
Eric C. Rosen

4.3.1 Min-Hop Routing (Why Mot to Use it)

The simplest routing scheme which is based on having each
Switch compute its shortest path to each other Switch s
*min-hop” routing. In min-hop routing, all Pathways are assigned
unit length, so that the shortest path between two OSwitches s
just that path which has fewer Pathways than any other.
{Generally, ties are broken arbitrarily.) This sort of routing
is wused 7n the current Catenst, where traffic is routed through
the fewest possible number of intermediate networks {or
equivalently, through the fewest number of intermediate
pateways.) This form of routing is quite simple. and does not
require us to worry about anything as complicated as detecting
changes in load or delay in remote components of the MNetwork
Structure. Such changing conditions within the Network Structure
heve no effect at 211 on the routing. This form of routing ‘can
be done with the minimal amount of overhead (in terms of the need
to send routing updates from Switch to Switch). Updetes need to
be sent only when the Pathways go down or come up. Any algoerithm
which attempts to be more responsive to changing conditions in
the Network Structure than min-hop routing still needs these
up/down updates, plus more besides, Min-hop routing s
definitely what one would use if one wanted to put in & "quick
and dirty" routing algorithm, and put off worrying about
complexities until some wunspecified later time. It is also
possible to argue for min-hop routing in the internet on more

principled grounds, as follows:
_22_
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“In general, it is not unreasonable to expect that the more
component networks an internet packet goes through, the less
likely it 1is to get to its destination, and the longer its
delay is 1ikely to be, if it does reach its destination. We
might expect that the number of component networks a message
goes through would generally correlate fairly high with the
delay of the message, and would generally correlate fairly
low with the obtainable throughput of a host-host transfer.”
Unfortunately, this sort of reasoning s only valid when
applied to a Network Structure consisting of homogeneous
Pathways. which have similar characteristics with respect to
delay. throughput, and reliability. This is rather unlikely to
be the case in the internet, whose distinguishing characteristic
is the heterogeneity of its Pathways. Where the Pathways of a
Metwork Structure have widely varying characteristics, delay and

throughput are not very likely to correlate well simply with the

number of hops.

It is true that the delay-oriented routing of the ARPANET
generally gives the min-hop paths. (Remember, though. that the
ARFANMET. wunlike the internet, has generally homogenecus
Pathways.) Min-hop routing is all right for the "normal® case,
where there are no areas of congestion in the network or
internet, no areas where the delay is unusually high compared to
other areas. Routing, however, is no different from other
computer system app11§atiun5. in that & scheme that works well
only in the normal c¢ase just is not robust enough to be
satisfactory. (Think of a magnetic tape driver which works in
the normal case, where no tape errors are encountered. but which
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crashes the system 1in the presence of "unusual” events. like
errors on the tape. Such a driver may be acceptable if one
accesses one tape a month, but not if one needs to read or write
ten tapes a day. The analogy is that min-hop routing may perform
acceptably in an experimental network with Tittle traffic. but is
much less likely to be acceptable in a heavily Toaded operational
network.) It is extremely common for some area of the network to
be much more congested than another. so that traffic flows which
traverse & particular area experience a very much longer delay
{and lower throughput) than traffic flows which avoid that area.
Significant dimbalances 1in Jload cause significant reductions in
the correlation betweén hop-count and performance. Such
imbazlances may not be present in a network initially. but if the
ARPANET experience is any indication, imbalances start to occur
with increasing frequency as network utilization grows. 1If the
routing algorithm cannot account for such imbalances. network
performance problems will start to occur with ever-increasing
frequency 2s the network gains more wsers, This wes our
experience with the original ARPANET routing algorithm. For all
its widely publicized faults, it provided generally acceptable
performance as long as the network was very Tlightly utilized, but
its failures became more and more evident as the ARPANET shifted
from a research prototype to a2 communications utility. If we
expect our network or internet to be heavily used by real users

who are sending real data that they really need for their
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applications, OUR ROUTING ALGORITHM WILL HAVE TO BE ROBUST ENOUGH
TO DETECT EXCEPTIONAL CONDITIONS AND TO ROUTE THE TRAFFIC IN SUCH
A WAY AS TO MINIMIZE THE EFFECT OF THE EXCEPTIONAL CONDITIONS.
IF AREAS OF THE METWORK BECOME CONGESTED OR EXPERIENCE UNUSUALLY
LONG DELAYS, THEN WE HAVE TO BE ABLE TO ROUTE THE TRAFFIC AROUND
THESE AREAS, instead of blindly sending traffic into congested
areas. At a certain level of congestion, sending traffic into a
congested area is 1ike sending it into a black hole: the traffic
will never leave the area to progress to its destination.
Sending traffic into a congested area also induces & feedback
effect, causing the congestion to spread farther than it
otherwise would, and making it that much 1less 1likely that the
congestion will dissipate. Any routing algerithm which cannot
take this into account will not be robust enough to survive in a

real operational environment.

Min-hop routing also has another disadvantage which is more
specific to the internet environment. Let N1. N2, and N3 be
three networks, and suppose we have to pet some traffic from NI
to N3 by using N2 as a transit network. Let G12 be a ogateway
connecting N1 and N2, let G23 be a gateway connecting N2 and N3,
and let G2X be a gateway which connects NZ to some other
unspecified network. If we use min-hop routing, then any traffic
which must go from G12 to G23 must go “directly”, through network
N2, without stopping at G2X, because the path G12-G2X-G23 has one
more hop than the path G12-G23. Perhaps this doesn't seem like
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much of a restriction: why would one want to have traffic stop at
the intermediate gateway G2X when it could go directly from G12
to G237 Actually, two possible réasons come to mind immediately.
The first reason has to do with the possible effects of the
network's end-end protocol. In the ARPANET, for example, a
source host s allowed to send only 8 messages to a given
destination host before receiving the RFNM for the first of the 8
messages. Hence the throughput obtainable on a host-host
connection is inversely related to the amount of time it takes to
get a RFNM from the destination host to the source host. It
follows that higher throughputs are obtainable between hosts that
are "near" each other than between hosts that are “far” from each
other. It is also possible that Gi2 and GZX will be near to each
other, and that G2X and G23 will be near to each other. but that
Gl2 and G623 will be far from ezch other. So the throughput
obtainable in & transfer between G12 and G23 may be less than
thet obtainable in a transfer between G12 and GZXK. and less than
that obtainable in & transfer between G2X and G23. It follows
that the throughput obtainable between G12 and G23 via G2X may be
higher than the throughput obtainable between G12 ang G23
directly. Basically, by using an additional gateway hop, the
ninth message from G12 can be put into the network while the
first message is still in transit from GZX to G23, while without
the intermediate hop, this is not possible. Of course, the best

solution to this sort of problem would be to fix the end-end
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protocel so  that it does not impose this sort of restriction.
Qur present point, however, is that our routing algerithm should
not rule out the possibility of this sort of strategy. Note that
by wusing an intermediate gateway hop, we might not only increase
throughput, but alsoc decrease the delay (since a ninth message

would not be blocked as long. )

(It 1is interesting to think a&about whether this sort of

strategy might not be useful entirely within the ARPANET.)

Another possible scenario in which an intermediate gateway
hop might be wuseful occurs if the dintermediate gateway is
multi-homed. It is possible that an intermediate gateway will be
homed to two IMPs which are distant from each other within the
network. If so. the intermediate gateway may be used as an

"expressway” around a congested area of the network.

if we replace the intermediate gateway GZX with two Dateways
G24 and G42, we also have the possibility of sending traffic from
N1 through G12 into N2 to G24 through N4 to G42 into N2 to GZ3
and thence into the destination network N3, This is akin to the
oft-discussed expressway problem, but cannct be handled within
the framework of min-hop routing. Of course, it might be very
difficult to take accnuﬁt of such factors, but one would not want

to have a routing scheme which makes it absolutely impossible.

_2?_.



[EN 182 Bolt Beranek and Newman Inc.
Eric C. Rosen

Still another disadvantage of min-hop routing in the Catenet

is the following. The current Catenet routing algorithm, when
faced with three gateways on the same network, considers the
three to be eqguidistant. However, the delay and throughput
obtainable from gateway A to gateway B may be very much different
than the throughput obtainable from gateway A to gateway C. 1In a
large distributed network 1ike the ARPANET, some pairs of hosts
gre connected by high-performance paths, and some by
low-performance paths (either because they are separated by many
hops. or because the path between them is under-trunked, etc.)
A1lowing the routing algorithm to be sensitive to this could

potentially have & large impact on the internet performance.

There may not be any network that actually uses min-hop
routing. except for the Catenet. There are. however, networks
that use &z variant of 4it, which we might call “fixed cost”
routing. In fixed cost routing, each Pathway is still assigned &
constant length, but not &11 Pathwzys are assigned the same
length, and some Pathways have a length which is not equal to 1.
In 2 scheme 1ike this, one attempts to zssign v&lues of length so
that slow-speed 1lines appear longer than high-speed 1lines,
reliable lines appear shorter than unreliable ones, -and 1lines
with high prupagatinn- delays appear lenger than lines with Tow
propagation delays. This sort of routing is used in DATAFAC and
in DECHNET. Both those network architectures have routing
algorithms based on the original ARPANET routing algorithm. The
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designers of those architectures apparently realized that min-hop
routing s not very satisfactory if the 1links are not of
relatively homogeneous gquality, but were probably wary of the
problems that the ARPANET's original algorithm had in adapting to
changing traffic conditions. They avoided these problems by not
adapting at all1 to changing traffic conditions. Of course, this
is the weakness 1in fixed cost routing. It may be better than
min-hop routing in a Tightly Tloaded HNetwork Structure with
heterogeneous Pathways, but in a heavily loaded Network Structure
with unbalanced load it really is no better than min-hop routing.

and will stil1l send traffic right into congeésted areas.

We have been emphasizing the claim that routing cught to be
able to detect congestion and route traffic around it. Some may
wonder whether we are confusing the proper functions of routing
with the proper functions of congestion control. That is not the
case. Congestion control schemes ogenerally try to 1imit the
amount of +traffic entering a network so &s to prevent or to
reduce the overloeding of some resource or of the whole network,
When congestion actually exists in the network, however, it is
the job of routing to try to send traffic arcund the congested
areas: otherwise the routing actually causes the congestion to
increase. Of course, one might attempt to design the routing
algorithm wunder the assumption that there will be & congestion
control scheme that will make congestion impossible. However,
such a design could not be very robust. If we want to build a
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robust Network Structure which will continue to operate under a
variety of wunforeseen conditions. then we want each software
module or protocol to be designed with the assumption that the
other modules or protocols will be 1less than optimal. The
resulting system will be much less prone to system-wide failure
than one which is designed so that no part of it will work at all
unless every part of it works perfectly. Although we will not be
discussing'exp11cit1y. in this paper. any schemes for cantrolling
the amount of traffic which s input to the internet, that
doesn't mean that we can ignore the way 1in which the routing
algorithm affects and is affected by the existence of congestion.
Particular problems related to overload of network resources
should be discussed in whatever context they arise in. without
worrying about whether the problem is properly called "congestion
control” or “"routing.” There is in general no way of telling in
advence whether the best solution to & particular problem 15 &
routing solution or a congestion control solution., and putting

labels on the problems just restricts our thinking.
4.3.2 Load Splitting

Routing 1in the ARPANET has always been “single-path
routing.” We mean by this that at any given moment, the
ARPANET's routing algorithm provides only a single path between
gach pair of IMPs. A11 traffic which enters the network at some

particular time, originating at IMP A and destined for IMP B,
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will travel over the same path. Actually, this statement is
somewhat oversimplified., since there might be a change of routes
while some traffic is already in transit. The point, however, 15
that at any given time, each source or intermediate IMP will send
all traffic for a particular destination IMP to a wunique

neighbor: it cannot split the traffic among several neighbors.

Routing in the Catenet 1is currently somewhat different.
Suppose gateway A has two neighbors, B and C, and has some
traffic to send to gateway E. The routing algorithm run in A
assigns a distance value to the path to gateway E via ﬁeighhnr B
and a distance value to the path tn E via neighbor C. If the
distance from A to E vwia B is the same as the distance from A to
E via C, then gateway A will alternzte between use of B and C
when sending traffic to E. That is, A makes simultaneous use of
two distinct paths to E. Such a scheme would be somewhat more
difficult to put into SPF routing. because in SPF routing. no
assignment of distance values from A to E via each of the two
neighbors 1is generated. Rather, only one path is computed, via
one of the neighbors, and only the distance on that one path 1s
known. Distance on other paths 1is not computed by the SFPF
algorithm. (On the other hand, the SPF algorithm generates the
entire path, so that éach Switch knows which other Switches its
traffic will be routed through on the way to the destination.
The original ARPANET algorithm does not do this, but only tells
gach Switch which of its neighbors to use when sending traffic to

the destination.)
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What is the significance of this? It seems to be commonly
regarded as obvious that multi-path routing, or load splitting.
is an important advantage. so that routing algorithms that permit
it are better than routing algorithms that do not. However, when
one asks advocates of multi-path routing why it is better than
single-path routing, a very common answer seems to be.
“Multi-path routing is better because it provides multiple
paths.” This sort of answer  is rather superficizl.
Multiple-path routing is NOT a goal in and of 1itself; IT IS
IMPORTANT ONLY INSOFAR AS IT SERVES SOME MORE FUNDAMENTAL GOAL.
If 2 multi-path routing algorithm results in smaller delays or
larger throughput than some other algorithm, then that i5 & good
reason for favoring it over the other algorithm. Now, it is
certainly true that any routing algorithm which OFTIMIZES network
delay or throughput will be a multiple-path algorithm. THE
CONVERSE, HOWEVER, IS HNOT TRUE. A routing algerithm which
provides multiple paths does not necessarily optimize delay or
throughput. In fact. merely because & routing algorithm provides
multiple paths, it does not feollow that it provides better
performance in any respect than some other routing algorithm
which provides only a single path between a pair of Switches. An
algorithm which provides a single good path may be far superior

to an algorithm which provides several poor ones.

To see this, let's look at some possible effects of the load
splitting in the Catenet routing algorithm., Let A. B, C, D, and
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E be five gateways. and suppose that there are two possible paths
from A to E, namely ABDE and ACDE. The Catenet routing algorithm
would regard these two paths as equidistant, since that algorithm
regards two paths as equidistant if they contain the same number
of intermediate gateways. Therefore gateway A would perform Toad
splitting on its traffic to E, sending half of the traffic to
negighbaor B and half to neighbor C. Does this provide more
throughput than the use of a single one of these paths? HNot
necessarily. If the bottleneck on the paths from A to E is the
Pathway DE.” then the wuse of these two paths provides no more
throughput than the use of either one alone. 1In fact, if DE is
the bottleneck. the use of the two paths will probably result in
lower throughput than the use of & single path. The wuse of
several paths increases the likelihood of the packets from A to E
arriving out of order at the destination host. Yet &s more
packets arrive out of order, more TCP resources are needed to
handle them. and the TCP just has that much more work to do. TCF
buffers that are occupied by out-of-order packets cannot be
"allocated” for receiving more packets, so acknowledgments must
be delayed, and windows must be kept smaller. The result of all
this will be higher delays and TJower throughputs, This was
probably not the dintention of load splitting, but is a likely

conseqguence of it.

Suppose there really are two independent paths from A to E
which are "equidistant”, say ABDE and ACFE. Ewven here, sending
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half the packets on each path may only degrade performance. To
see this, suppose each of the Pathways AB, BD, DE. AC, and CF has
a capacity of 50 kbps, but that 1ink FE has a capacity of 10
kbps. Suppose also that we want to send 50 kbps of traffic from
iz 2 If we alternate packets between these two paths, by
trying to send 25 kbps of traffic each way, we will be able to
get at most 35 kbps of traffic through to the destination, and we
will cause severe congestion on link FE (which will probably
result in its being able to carry even less than the rated 10
kbps, further lowering the network throughput.) Had we used only
the single path ABCD, we would have been able to pass more
traffic. Again., we see a situvation where the wuse of Tload

splitting can reduce throughput and increase delay.

This sort of problem might &t first appear to be too
unlikely to be worth worrying about. However. it has alréady
occurred in the Catenst. and has caused a significant problem.
In fact. in the Catenset's actual problem, half of the traffic was
sent on a path whose capacity was sufficient to handle &al11 the
traffic, and +the other half of the traffic was sent on a path
whose capacity was essentially zero (because a network partition
made the destination host unreachable on that path). In this
case, logad splitting resulted in the throughput being cut 1in
half, as half the traffic was routed down a black hole! The
problem was “"solved” by eliminating one of the two possible
paths., thereby eliminating the possibility of load splitting.
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However, this does not seem like a proper way to deal with this

problem in the general case.

The Catenet's 1load splitting has been defended from this
latter objection as follows: "If there were no locad splitting,
maybe all the traffic would have been sent into the black hole,
not just half.” This is less a defense than a sad commentary on
the state of the Catenet routing; to accept this sort of defense

is just to give up entirely on the problem of internet routing.

Someone may reply to our first criticism of load splitting
by saying "maybe the bottlenescks will be Pathways AB and AC,
rather than DE, in which case the use of two paths does increase
the throughput.” This reply is correct, but not very important.
The sort of 1lopad splitting done in the Catenet might, by pure
chance, increase throughput in some particular case, The point
though is that it is no more 1ikely to increase throughput than
to decrease it., Certeinly there is no reason to suppose that the
cases in which it might help are any more likely to occur than
the cases in which it hurts. In our experience with the ARPANET,
schemes that seem a priori as likely to hurt as to help always
end up hurting more than helping. (In networking, Murphy's law
is more than just a joke.) Choosing equidistant paths for load
splitting will generally result in paths which are only small
variants of each other (if it results in any paths at all, since

there are not necessarily several equidistant paths between &
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pair of Switches), and there is no reason to suppose that the
bottleneck will not be common to each path. Even if we do get
two paths which do not share & bottleneck, wunless we try
explicitly to apportion the flows to the relative capacities of
the two paths (rather than just dividing the traffic 50-50}. we

will not. in general, gain any increase in throughput.

In chapter 4 of [6], we actually devised a multiple-path
routing scheme, based on SPF, whose purpose was to maximize
throughput. In this scheme. we make sure that any set of
simultansously used paths between two Switches are
"bottleneck-disjoint™, (i.e., they don't share a bottleneck). so
that we know that we can get more throughput by use of several
paths We also devised & flow apportionment scheme which
attempts to match flows (or parts of flows) to the aveilable
capacity of each path. Anyone interested 1in seeing what it
really takes to do multi-path routing should TJook at that
chapter. The scheme proposed there is quite <complex, however,
and it 1is not obvious that it will work. Some simuliation work
will eventually be done on it. Until that sort of algorithm 1is
much better understood, it would not be very wise to use the
internet to experiment with it. It will be difficult enough to
adapt & we11-under5toﬁd and much-used routing algorithm (1ike
that currently in the ARPANET) to the internst environment. The
internet is certainly not a place for experimenting with new and
untried routing algorithms.
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Although it is quite difficult to design a multi-path
routing procedure that results in significant improvements of
delay or throughput over single-path routing, there are other
reasons for reqguiring multiple paths between a pair of Switches
that are more easily dealt with. For example, we may be reguired
to have different paths between a pair of internet gateways
because of ACCESS CONTROL RESTRICTIONS. That is, certain classes
of packets may not be &allowed to traverse certain classes of
networks, so that different routes would be required for the
different classes of traffic. We may also decide that different
types of service that may be requested by the user should travel
over different paths. even if the source and destination gateways
are the same for the different traffic classes (e.g.. maybe we
don't want to use multi-hop satellite networks for dnteractive
traffic.) This 1is easily handled within the framework of SPF
routing. FRemember that the SPF algorithm produces the shortest
path to a destination, based on an assignment of Tsngths to the
Pathways. Rather than simply assigning a unique length to each
Pathway., we can assign 2 set of lengths, indexed by traffic
classes. We can then produce a set of routing tables, indexed by
traffic type. such that the routing table for & given traffic
type contains the "shortest"” path, based on the Jlength
assignments for that traffic type. For example, if traffic class
L is not permitted to traverse Pathway P, the 1length of P,

indexed by C, can be set to infinity. This ensures that that
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Pathway will not be part of any path found in the routing tables
indexed by C. We even have the flexibility to assign to P a
length which, while not infinite, is much Targer than the Jlength
of any other Pathway. In this case, that Pathway will be used
for traffic of class C only if EVERY path to the destination
includes it (i.e., only if it can't be avoided). This sort of
Toad splitting might be quite important in the internet, and is

also guite simple to handle.
4.3.3 Delay vs. Throughput

In the ARPANET, each IMP measures the averzge delay per
packet on each of its outgoing Tines, This average delay 1s
assigned as the “length" of the line, and shortest paths are
computed on that basis. We have studied the performance of this
algorithm & great deal [5]. It tends to use min-hop routes under
conditions of light or of uniform logd. However, it does ssem to
take account quite well of the varying delays that are produced
by 1lines of different transmission or propagation delay
characteristics, Since congestion causes large increases in the
delays, congestion 1is ogenerally detected by the routing
algorithm, and traffic really is routed around congested areas
when that is possible. While we cannot claim that our ruuiing
algorithm gives the optimal delay, the characteristics that it
does have seem to be the characteristics that we would really

1ike to see in any robust. operational network, and particularly

_35-



IEN 189 Bolt Beranek and Newman Inc.

Eric C. Rosen
in the internet. The routing tends to be stable on what are
intuitively the best paths, except when exceptional conditions
arise which make it clear that some other path is 1ikely to
provide better performance. It is this sort of routing which we

propose for the internet.

Before discussing further the use of delay-oriented routing
in the internet, we would like to briefly consider the issue of
throughput-oriented routing. In the previous section, we argued
ggeinst the wuse of multi-path routing as a means of optimizing
throughput. largely on the grounds that doing it right s
extremely difficult (much more so than one might at first think),
that the weys of doing it right are guite poorly understood. and
thet the internet is not ‘& good testing ground for new and
untried &lgorithms. However, one often hears that there are high
throughput applicetions (bulk traffic) for which delay doesn't
matter, and one may wonder whether there 1is not some kind of
single-path routing which 1% more appropriate for such
zpplications than is delay-oriented routing. One scheme that s
very commonly suggested is that of routing traffic on the path of

maximum excess capacity, instead of on the path of least delay.

Given an algorithm for determining the amount of excess
capacity on each Pathway (which could be quite difficult to
design for the internet environment -- how do we know what the

gexcess capacity of a packet-switching network is?), it is no
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difficult matter to modify the SPF algorithm to produce the paths
of maximum excess capacity. However, it would not be & good idea
to use the resultant routes for bulk traffic. For one thing. we
must wunderstand that such a routing algorithm would not maximize
toetal network throughput. (By "maximizing total network
throughput”, we mean maximizing the amount of traffic that the
network can handle.) Suppose, for exzmple., we wanted to send 40
kbps of traffic, and had the choice of using a one-hop path with
excess capacity of 50 kbps, or a 10-hop path, each of whose 1inks

hed an excess capacity of 100 kbps {so that the total composite

(1L

pzth has an excess capacity of 100 kbps). By using the shorter
path. we use up & total of 40 kbps of network capacity, capacity
which s now unavailable for other traffic. By uwsing the longer
path (which is the path of maximum excess capacity), we use up &
total of 10x40 kbps {40 kbps per hop). thereby using up 2 total
of 400 kbps which is no longer available for other traffic. In
terms of maximizing the total network throughput., we do betiter by

using the one-hop path, rather than the path of maximum excess

capacity.

Mzybe we are less interested in maximizing total network
throughput than 1in finding a path for some particular traffic
fiow which has enough capacity to handle the required throughput
of that flow, We still would not want to use the path of maximum
excess capacity, for that path might have a delay which is much
too long. Although we often hear that certain classes of traffic
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(e.g., file transfer) care only about throughput, not delay, this
is really & gross oversimplification. In file transfer, we don't
care how long it takes for the first packet to reach its
destination, AS LONG AS ALL THE FOLLOWING PACKETS FOLLOW
IMMEDIATELY, WITH NO DELAYS BETWEEN THE ARRIVALS OF SUCCESSIVE
PACHEfS. Of course, if there are long delays between the packets
of a file transfer, the throughput will be very low. Hence it is
not quite. true to say that file transfers &nd the 1ike are
unconcernad with delay. If higher level protocols 1ike TCP are
being used, then routing over a path of long delay will certainly
result in lower throughput. The reason is as follows. A TCP
sender will only send a certain amount of data, wuntil he fills
the window specified by the TCP receiver. The size of the window
is very likely to depend on such network-independent things as
the amount of resources {(e.g.. buffers) in the destination hgst.
IT the path between source and destination host is very long,
then the sending TCP will fill the window, and then have to wait,
idly, for some period of time while his data gets to the
destination, and while the message indicating the re-opening of
the window is transmitted from the receiving TCP. Since this
network-imposed 1long delay causes the sending TCP to have to be
idle for some period of time, it holds down the throughput. So
it SEeEms that all things considered, simply routing
high-throughput application traffic on the path of maximum excess

capacity is unlikely to &ctually result in high throughput.
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If we really wanted to do single-path throughput-oriented
routing, we would need something like the following. We would
want to route traffic on the shortest path (i.e., the path of
least delay) which does not contain any components whose
available capacity is too small to handle the needed throughput.
This would préevent us from choosing a path with arbitrarily long
delays, or 2 path with too 1ittle capacity. Unfortunately, it is
galmost 1mp955ih3e to find out either what throughput is needed by
an application, or to find out just what the capacity of
particular components of the dnternet is. We might want to
consider some strategy such as not sending batch traffic on paths
which include components which are very heavily loaded. This is
fertile ground faor experimeﬁtatiun_ Our present point. however.
is that the delay-oriented SPF routing of the ARPANET already
provides the basic structure thit we need to zccommodate Fhis
sort of stretegy. 1If we knew that wes wanted bulk traffic to
avoid certain Fathways (e.g.. Pethways with too 1ittle
bandwidth), we could have 3PF routing compute the shortest routes
that did not include those Pathways, by wusing the “indexed
length" scheme described in section 4.3.2. There is no need to

consider different sorts of routing schemes.
4.3.4 Knowing the "Whole Picture”

The use of the SPF algorithm requires that every Switch know

the complete topology of the Network Structure. That is. ewvery
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Switch must know of all the other Switches, must know which
Switches are “"directly connected” to which other Switches, and
must know the “"length” of each Pathway. This is not to say that
this information is "compiled in", or even 1loaded 1in manually.
Rather. 1t s determined dynamically, in real-time, through
interpretation of the routing updates (see section 4.5). T sils
this wuniform global knowledge of the topology and the Pathway
lengths that enables each Switch to run a shortest path
algorithm, while producing routes which are consistent with the
routes produced by other Switches, so that routing loops do not
form. The SPF algorithm does not merely tell a Switch to which
of its neighbors it should send packets for destination D.
Rather, it computes thg entire path to the destination Switch.
However. when & packet is routed, it does not carry with it the
identity of the entire route. as computed by its source Switch.
Each Switch just forwards the packet to the next “"hop"” 2long 1its
route. The fact +that all Switches have the same information
about the topology is what ensures that this routing will be free

of loops.

Since each Switch performs its routing based on a complete
picture of the topology of the Network Structure, we can call
this sort of routing scﬁeme a "whole picture” scheme. In this
section, we will compare "whole picture” schemes with some other
schemes which do not require the Switches to have uniform global
knowledge of the topology. We argue that “whole picture” schemes

gare always superior.
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The original hRPnNET'rﬂuting scheme, and the current Catenet
routing scheme, are not “whole picture” schemes. In these
routing schemes, no Switch need have any knowledge of the
topology, other than who its own immediate neighbors are, and the
lengths of the Pathways to its immediate neighbors. These
algorithms function as follows. When 2 Switch first comes up, it
forms a hypothesis as to the best neighbor to which to send data
for each possible destination Switch., This initial hypothesis is
based only on its own local information about the lengths of the
Pathweys to 1its neighbors. It then dinforms dits -immediate
neighbors of its hypotheses, and is informed of their hypotheses.
i3 then forms & new hypothesis, based on 1its own local
information AND the hypotheses communicated to it by its
neighbors, It then exchanges hypotheses with its neighbors
again. and again, and again, until its own hypotheses are 1in
compiete agreement with those of its neighbors. at which point

stebility is reached.

To see the difference between this sort of routing scheme
and the “"whole picture" scheme, consider the following situation,
Suppose we have 100 people in a room, sitting in chairs which are
properly lined up so that we can talk of each person’'s having two
immediate neighbors. .WE also have a picture of an object, and
our gcal is to have ALL the people agree on the identity of the
depicted object. Now we have a choice of two different
procedures for bringing this about:
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Procedure 1: Cut the diagram into 100 pieces, and give one piece
to each person. Each person is now allowed to Took
at his one piece, and then form & hypothesis as to
what is depicted dn the full picture. Then each
person c¢an exchange hypotheses only with his

immediate neighbors. Then each person can form a
new hypothesis and exchange that with his immediate
neighbors. The procedure terminates when all 100

people agree on what is depicted.
Procedure 2: Make 100 Xerox copies of the diagram, and distribute

the copies to each person,
If we rea1]y think it is important for each person to know what
is depicted 1in the picture, then we will certainly follow
procedure 2, which will make the whole picture immediately
available to all participants. Procedure 1 would only be useful
as a party game. It would be quite amusing to see all the
ridiculous hypotheses that are formed before all participants
converge to the correct one, IF they ever do manage to converge.
Even if they do converge. it might take quite a long time. We
must remember that different people form hypotheses at different
rates, and can communicete them at different rates. Some people
may simply refuse to talk to certain neighbors at all. If one’'s
left-hand neighbor has formed 2 good hypothesis. but one's
right-hand neighbor has not, one’s own hypothesis is likely to be
thrown off the track, which in turn is likely to mislead one's
left-hand neighbor into a poorer hypothesis during the next
"iteration.” This is not & very optimal procedure for bringing

about convergence of opinion.

- 45 -



IEN 189 Bolt Beranek and Newman Inc.
Eric C. Rosen

However, this situation is really too simple and
straightforward to be truly analogous to routing. To improve the
analogy. we must suppose that the picture is constantly changing.
even as the people are still forming hypotheses. In procedure 2,
this change is accounted for by simultaneously giving each
partiﬁipant a new copy of the picture. In procedure 1, changes
in the picture are accounted for as follows: if the part of the
picture ﬂciginalty given to person P has changed, then give him
the corresponding piece of the same picture; he can now use this
piece when forming his hypotheses, and should forget about the
previous piece. When the procedures are thus modified to take
account of changes 1in the picture, the situation described is
more anzlogous to routing, and the advantages of procedure 2 over

procedure 1 are even more pronounced.

The ARPANET's current routing zlgorithm is similar’ to
procedurs 2. since the whole picture is made available to each
Switch. The ARPANET's original routing algorithm, &nd the
Catenet’'s current one, are more similar to procedure 1; perheps
they should be called "jigsaw puzzle" algorithms. A1l of the
problems of procedure 1 have their analogies in those routing
algorithms. It should be obvious that in terms of
responsivengss, BCCUTacY. and consistency, whole picture
algorithms are superior to jigsaw puzzle algorithms. Many of the
problems of the original ARPANET routing algorithm, such as
looping and very slow response to topological change. can be

attributed to its "jigsaw puzzle” nature.
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Even if one agrees that we ought to avoid "jigsaw puzzle"
algorithms, one might still claim that we need not have a “"whole
picture” algorithm. One might wish to argue that a given Switch
needs to know anly the topology of & "region” which contains it.
This region would be larger than &2 single Switch, but smaller
than  the set of all Switches. A region would alsoc be
geographically contiguous, so that if twoe Switches are in the
same region, then there is a path between them which is entirely
within the region. Then traffic which does not need to leave a
region to get from its source to its destination is -in effect
routed by a8 “whole picture” scheme., Traffic which must leave the
region. however, does not have its whole route preplanned.
Switches within one region will know only how to get traffic out
of the region. Other Switches in the next region will know how
to ¢get the traffic through that region, etc. It seems. one might
argue. that this sort of regionalized routing scheme ocught to be
possible. After all, consider the analogy with ordinary road
travel. If one wants to travel from Boston to Los Angeles. one
need not preplan the entire route. One can just head in the
general direction of Los Angeles. with no need to know anything
about the roads which are close to Los Angeles until one actually

gets close. A similar scheme ought to work with data.

One problem, however, with the suggested analogy, is that it
does not even hold in the case of ordinary automobile travel. If
ong were planning an automobile trip to LA, one would want to
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know about any record-setting blizzards in the midwest long
before one actually approached the midwest. One would want to
know about the status of Mt. St. Helen's volcano long before one
approaches Oregon. One might try not to be passing through
Chicago at rush hour. Avoiding any of these potential disaster
areas could require quite a bit of advance planning. Of course.
the amount of advance planning that one performs when travelling
ijg a matter of personality; some people are more adventurous
than others. and might actually enjoy 2 disaster or two along the
Way. Users of a data communications utility. however. whatever
personality traits they may have, generally do not want their
data to be sent on an adventure. Rather, they want their data to
be trezted with a conservatism and caution which require

considerable preplanning.

In any case. the analogy between the road system and & data
communications network is wvery misleading beczuse of the very
rich interconnectivity of the road system. No matter how many
problems an automobile driver encounters as he approaches Los
Angeles. he still has a large number of choice points, in that he
can take any number of relatively short detours around problem
areas. In data networks, however, the connectivity is much less
rich, and the closer thé data gets to its destination, the fewer
choice points there are. With a sufficiently sparse
connectivity, the entire path could even be determined by the
very first routing choice that is made. so that no detours around
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problem areas are pessible once the "trip"™ begins. The situation
is as if someone drove from Boston to Newvada, then found that all
roads from MNevada to California were closed, and that he then had
to drive all the way back to Boston to start on a2 new route to
California. This sort of sub-optimality is inherent +to any

regionalized routing scheme for data communications networks.

In fact, the situation could be even worse, If Switches in
Boston know nothing about what is happening between MNevada and
California, _then data for Ce2lifornia which arrives at Mevada and
then is sent back from MNewvadz to Boston for alternate routing
will just Jloop back to Nevada. The data will be stuck in an
infinite loop. never reaching its destination. In IEN 179, Danny
Cohen proposes a regional routing scheme 1ike this. apparently
na£ realizing that it suffers from loops. His proposal also
includes 2 form of hierarchical addressing which is closely bound
up with routing, 5o that a Switch in Boston might not even be
able to distinguish data for MNevada from data for California.
That is, in Cohen's scheme, date for MWevada and data for
California would be indistinguishable at the Boston Switches;
all such data would gppear to be addressed to Nevada. Only the
Switches at Nevada would Jook further down the address hierarchy
to determine whether the data needs further forwarding to
California. Any such scheme is hopelessly loop-prone. except in
a Network Structure whose connectivity is extraordinarily rich,
much more so than the Catenet’'s will ever be.
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It might seem 1ike these objections would also have to apply

to the internet, since a gateway does not know all about IMPs and
packet radios and SIMPs., etc., in the component networks.
However, the looping problem is avoided in the internet since it
is organized in a strict hierarchy of MNetwork Structures.
Switches in one Network Structure need not know anything about
Switches 1in any other MNetwork Structure, but they must have
complete i?formatinn (Whole Picture) about Switches in the same
Network Structure, A11  (source or intermediate) Switches in a
particular Network Structure always route data to & 3witch 1in
that same Network Structure. This imposition of strict hierarchy
prevents Jlooping, as long as the lower levels of hierarchy are
controlled by the higher Iaué1s. In the dinternet. this means
that, e.g., if a gateway hands & packet to an ARPANET IMP for
delivery to an ARPANET Host or to another internet gateway. the
ARPANET is required to deliver the packet as specified by the
gateway. or to say why not. It must not simply pass the packet
back to the gatewey, or & loop will form. (This sort of looping
has been frequently noticed between IMPs and port expanders.)
This does not imply that an ARPANET IMP cannot pass & packet to
an internet gateway for delivery (through an “expressway
network™) to another ARPANET IMP, but only that once an internet
gateway decides to send & packet into the ARPANET, the ARPANET
must get that packet to the intended destination, or else inform

the gateway that it cannot do so.
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It is also impurtant'tﬁ note that the hierarchical levels in

the internet tend to be “horizontal”, rather than “vertical”™.
That d4s, 1n an internet spanning North America. there would be
internet gateways located all across the continent, as well as
IMPs  and packet radios and PSATs Jlocated throughout the
continent. This is quite different from regionalization, in
which Switches which are close geographically are in & common
region. This distinction is very important if we are to avoid

such problems as looping.

&1though building the internet as & strict hierarchy of
Network Structures avoids the problems of Jlcoping, there is
always some degree of sub-optimality introduced whenever the
topelogical knowledge of the Switches is restricted in any way,
even 1if the restriction is just to Switches within the same
Network Structure. This is a point to which we return in section
4 .E. where we discuss some of the basic Timitations of

internestting.
4.4 HMeasuring Pathway Delay

One of the most basic problems in devising a2 scheme to do
delay-oriented routing is to figure ocut a way to determine the
delay. In the ARPAHET; the delay measurement algorithm is quite
straightforward. When & packet arrives at an IMP, it is stamped
with dts arrival time. When it is transmitted to the next IMF,
it is stamped with the time of transmission. ARPANET packets are
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buffered in an IMP until acknowledged by the next IMP; if a
packet has to be retransmitted, its transmission time stamp is
gverwritten with the time of Tlatest transmission. When the
packet is acknowledged by the receiving IMP, the arrival time is
subtracted from the transmission time. yielding the total time
the pecket spent in the IMP., The propagation delay (i.e., the
speed of light delay along the phone 1ine from one IMP to the
next) is then added 1in to compute the total amount of time it
took to get the packet from one IMP to the next. There are three

important aspects of this delay measurement algorithm:

1) It is necessary to measure the amopunt time each packet
spends within the Switch. This should be as easy to

epply to a gateway as to an IMP.

2) It is necessary to determine how long it takes & packet
to travel from one Switch to another over the Pathway
connecting them. If the Pathway is & telephone Tine. as
in the ARPANET. this is just the propagation delay. &and
is a constant which can be separately measured and then
stored 1in a table. On the other hand. if the Pathway is
a2 packet-switching network, or even an internet, this s
much more difficult to determine, and i5 certainly no

constant.

3) There must be some way to account for packets that don't
get through, or don't get through immedigtely. due either
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to errors or to congestion. In the ARPANET, if a packet
doesn't get through on its first IMP-IMP transmission,
and has to be retransmitted 200 ms. Tlater. this 200 ms.
gets added into the packet's delay. This is a wvery
important feature, since it enables the delay measurement
to reflect the effect of congestion or of a very flakey
Tine. But unless the gateways run a reliable
tr?nSmissian protocol among themselves., it will be
difficult to make sure that our delay measurement really
reflects these factors. If we are trying to send data
through a network which is dropping most of the data we
send it, we want to make sure that our delay measurement
routines produce a h%gh value of delay. so that traffic
will tend te be routed &round this wvery flakey and
unreliable Pathwegy. (Remember that if too much traffic
is dropped, some (higher) level of protocel will have to
do & 1ot of retrensmissions. resulting in wvery high

delays and low throughputs. )

The problem of how to measure delay is more tracteable in the
case of AREA ROUTING than 1in the more general internet case.
Recall that by "area routing,” we mean & sort of internet all of
whose component networks are basically identical (see IEN 184).
For example, we might at some future time decide to divide the
ARPANET dinto areas., connected by cateways, so that the ARPANET
itself turns jinto a hierarchical network. If we decide to use
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the same routing algorithm at the high level (i.e., among the
intra-ARPANET gateways) as we use at the lower level (i.e., among
the individual IMPs in & particular area), then the gateways
could obtain the delay measurement information directly from the
routing updates sent by the individual IMPs. That is. the Jlower
level routing algorithm could provide information to the gateways
enabling them to deduce their delay to other gatewzys. If the
gateways are also ordinary IMPs, this information is
automatically available, If the gateways are hosts on the low
level ARPANET, a special protocol would have to be developed to
enable the IMPs to transmit the routing updates to the gateways
they are connected to (though this wouldn't be much different
from the protocol that IMPs now use to transmit routing updates
to their neighbaring IMPs). Of course, if we were to implement &
scheme 1ike this. we would 5til11 want to make the ARPANET appear
as a single Pathway (with no intermediate Switches) 2t the level
of the Network Structure of the Catemst. That 1is. the Catenet
would be a third hierarchical laysr over the two hierarchical

levels of the ARPANET, which would be transparent to it.

In the more general internet case, we cannot rely on the
component networks to provide us with the sort of delay
information we would 1ike to wuse for the idinternet routing
algorithm: the internet Switches will have to have some way of
gathering this information themselves. In general. it will not
be possible for a Switch to measure the one-way delay from itself
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to 1its neighbors. (We wouldn't want to rely on the radio clocks
that are now beginning to be deployed at the gateways. while
these might be wuseful for doing measurements. we wouldn't want
the reliability of the entire operational internet system to
depend on a radio broadcast over which we have no control.) It
is possible. however, to measure round-trip delay between each
peir of neighboring gateways. In the ARPANET, for example,
round-trip time is easily measured by keeping track of when a
message 15 sent to a neighboring gateway, and then noting the
time when the RFNM 1is received. One-way delay would be

spproximated by dividing the round-trip delay in half.

It 1is certainly true that the round-trip delay is not. in
general, exactly twice the one-way delay. However, it seems 11ike
2 good enough approximation to wse 1in the internet routing
glgorithm, A1l we really require is that it be roughly
proporticnal to the one-way delay., inmn that both one-way and
round=-trip delays tend to rise and fall together. and that
congestion in the Pathway (component network) tends to make both
increase. Of course, before designing the precise delay
measurement scheme that we would want to use in the internet, we
would have to run a series of tests and experiments to see which
of several possible de]éy measurement algorithms gives us the
results we want. This would be similar to the extensive testing
of the ARPANET's delay measurement algorithm that is documented
in [4].
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Unfortunately, there are many networks which do not return
anything 1ike RFNMs that could be used to gauge even the
round-trip delay. {Many networks, e.g., SATHET and the
forthcoming wideband network, do not even tell you whether you
are sending traffic to a host which is down.) So we will need a
gateway-gateway protocol in which gateways receiving data from
ether (neighboring) gateways send back replies which can be used

for timing.

This does not mean that every packet sent from one gateway
ty another must be acknowledged by the receiving gateway.
Rather, we would propose something like the following. Suppose
we have. as part of the gateway-gateway protocol, a bit that a
sending gateway can set which requires the receiving gateway to
ecknowledge the packet. The sending gateway can have a random
number generator, which lets it select packets at random in which
te set this bit. These packets will have their round-trip delay
measured, and will constitute a random (and hopefully &
representative) sample. The packets need not be buffered in the
sending gateway pending acknowledgment, but they will need to
have unique identifiers so they can be kept track of. The
round-trip delay of each packet is then easily determined when
the acknowledge is rece%ued. (This probably implies though that
gateways will have to run a protocol with their neighbors when
they first come up in order to synchronize sequence numbers to
use for identifying packets uniquely.) There will 2lso have to
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be a time-out, so that a packet which is not acknowledged within
a certain amount of time (perhaps dependent on the expected delay
of the packet, based on previous measurements) will be considered
to have been Tlost on the Pathway between gateways (or in the
receiving gateway). Packets which have been 1lost should be
assigﬁed a very high delay, so that the routing algorithm assigns
& wvery high delay to Pathways which Topse a lot of packets. This
will tend }n cause internet traffic to awvoid such Pathways.
There doesn't =seem to be any problem in principle with a scheme
like this, but we will probably need to do some statistical
analysis in order to determine the best random sampling
technique, and to figure cut how many packets we might need to
keep track of during some ﬁeriud of time (i.e., how big 2 table
do we need to keep track of packets which are gwaiting

acknowledgments?).

This sort of random sempling can &1so be used as part of a
Pathway up/down protocol. If a certain percentage of the sempled
packets do not get through, it might be good to assume that the
Pathway is not of sufficient quality to be operational, and
should appear to be down as far as the internet routing algorithm
is concerned. In the absence of real data traffic, we could run
the wup/down protocol with randomly generated test packets.
Randomly generated test traffic or randomly sampled data traffic
will give wus a better result than periodic test traffic. since
measurements based on random sampling are less 1likely to be

correlated with other network phenomena.)
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After we compute the delay for individual packets, we still

face the following two questions:

1) The delay which the routing algorithm assigns to a
particular Pathway will be & function of the measured
delays of the individual packets sent on that Pathway.

But what function should it be?

2) Once a Switch determines the delay on the Pathways
emanating from itself, it must inform &11 other Switches
of these values (in routing updates). What protocol

should it use for disseminating these updates?

The second guestion will be discussed in section 4.5. The

remainder of this section will deal with the first questian.

After measuring the delays of individual packets. the
individual delays must be put through some sort of smoothing
function before they can be wused as finput to the routing
algorithm, For example, in the ARPANET, we take the averags.
every 10 seconds. of the delays experienced by all the packeis
traversing a particular 1line in the previous 10 seconds. This
average is used as input to the routing algorithm (i.e., it 1s
assigned as the "length" of the 1line when the shortest-path
computation is run.) We didn't choose this smoothing function at
random; we chose it because it meets certain desiderata. Our

real purpose in measuring delay on a particular line is to enable
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us to predict the de]aj that will be seen by packets which are
routed over that line in the future. Knowing the average delay
during some period in the past is of no value except insofar as
it enables us to make predictions about the future. We found 1in
the ARPANET that for a given Jlevel of traffic, the delays
experienced by the individual packets would vary quite a bit, but
the delay when averaged over 10 seconds stayed relatively
constant. (It is interesting that everyone who does measurements
of dindividual packet delay always discovers this large variance,
and always expresses great surprise. This "surprising” result is
50 often re-discovered that it should cease to be a surprise.)
When designing the delay measurement routines for the ARPANET. we
investigated some other smoothing functions (everyone seems to
have his own fauorite}: but none gave more reasonable results
than the simple average we adopted (which 95 not a running
average, but rather starts over again from scratch every 10
seconds). We also tried averaging periods of 1less than 10
seconds, but found what we regarded as toco much wvariation, even

when the traffic load was stable.

Note that if we take an average every 10 seconds, we cannot
react to a change of conditions in less than 10 seconds. and we
are pften criticized hy-penp1e who ¢laim that it is important for
routing to be able to react more quickly. Our reply. however, is
simply that it takes 10 seconds to be able to detect a
significant change in delay. Averages taken over smaller periods
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show too much variation under constant 1lpad to be wuseful in
predicting the future delay, and hence are not useful in routing.
In other words, averages taken over smaller periods give spurious
results, “detecting” changes when in fact there are none. We
want to change routing in response to real changes in network
conditions, but not in response to the normal range of stochastic
veriations in delay. Any change in routing made on the basis of
a shorter-term average is &t least as likely to be harmful as to
be helpful. That is, if we attempt to mzke routing changes based
on delay data which is not sufficiently smoothed, we are really
meking changes at random. since we have 1left too much random
variation in the delay data. And it seems that a good routing
glgorithm should not make changes at random. 0f course, it would
be nice if we could make routing changes instantaneously based on
instantaneously detected changes in real network conditions. but
this is not possible simply because there is no instantaneocus way

of detecting important changes in network conditions.

It is important to realize, however, that the measurement
periods in the various IMPs are not synchronized. Although &
given IMP generates updates no more often than every 10 seconds.
some IMP or other is generating an update about every 500
milliseconds. Mathemafica1 analysis indicates that synchronized
measurement and updating periods should be aveided, since they

give worst case performance [4].
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There are other important reasons for not making routing
changes too often. During the lifetime of & single packet in the
network, we want the routing to be relatively constant, so that
the packet can get to its destination without having to take too
many detours. If we changed the routing every millisecond, for
example, & single packet in transit though the network would
experience many routing changes while im transit. which would
probably Cause it to have & longer delay than necessary. The
rate at which we change routing should be TJow relative to the
average transit time of a packet through the network. Another
reason for not making routing chenges too fregquently has to do
with the time it takes routing updates to travel around the
network. We want to make sure that the information carried in &
routing update is not totally obsolete by the time the update is
received. This implies that the smoothing interval for delay
megsurements has to be long relétive to the time it tekes updates

to traverse the network.

In the ARPANET. 10 seconds is much longer than the amount of
time it takes to get wupdates arocund, or the amount of time a
packet spends in transit in the network. We chose 10 seconds as
the averaging interval because it seemed to be the shortest
period that was long enough to give us a reasonable amount of
smoothing. If we think that in the internst, however, average
transit times might be measured in the tens of seconds, we may
have to make our smoothing interval considerably longer than 10
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seconds, perhaps as long as & minute. This could seriously 1imit
the respensiveness of the routing algorithm to changing network
conditions. However, there is nothing we can do about this. THE
LONGER IT TAKES PACKETS TO TRAVEL AROUND A NETWORK, THE LESS
RESPONSIVE THE ROUTING ALGORITHM OF THAT METWORK CAN BE, for the
simple reason that it will just take Tonger to disseminate the
information needed for routing around the network. The transit
time of apnetwnrk places an upper 1imit on the responsiveness of
that network's routing algorithm. Any attempt to exceed this
upper limit {with kludges or heuristics) will just be futile, and
will result only in unstable and mysterious behavior on the part
of the routing algorithm, reducing. rather +than increasing,

performance.

This is not to say that each Switch must generate routing
updates &s often as every 10 seconds. If there is no change in
delay from cne 10-second period to another, then there is no
rezson to generate an update. Or if there is a change. but it is
not "significant”, then there is no reason to generate an update.
In the ARPANET, a delay change is considered to be significant if
it exceeds a certain (parameterized) threshold. We devised a
scheme wherein the threshold decreases with time, so that a wvery
large change is always “significant", but a small change s
significant only if it persists for a long time. Of course,
routing updates must be generated not only in response to
measured changes in delay, but also if a 1line goes down or comes

up.
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We would expect that the details of the delay measurement

and smoothing algorithms will have to be different in the
internet thanm in the ARPANET, but the principles outlined above
would seem to apply in the internet environment also. WE WILL
HAVE TO DO SOME CAREFUL EXAMINATION OF THE DELAY-THROUGHPUT
CHARACTERISTICS OF EACH OF THE INDIVIDUAL NETWORKS THAT ARE USED
AS PATHWAYS 1IN THE INTERNET, and it may be that somewhat
different smoothing algorithms will have to be used for the
different kinds of Pathways. However, there doesn't seem to be
any problem in principle with doing this sort of delay

measurement.

An interesting issue arises if a given pair of gateways is
connected by two or more distinct Pathways. For example, two
gateweys might both be connected to ARPANET and SATNET, so that
each can be vreached from +the other by either of those two
networks. Or, & gateway might be multi-homed on the ARPANET. so
that it has two distinct access lines over which it can reach all
the other ARPANET gateways. In such cases, do we want to
separately report the delay on each of the distinct Pathways, or
do we want (&t the level of rouwuting) to represent the connection
between each pair of gateways as a single, wunigque Tline, whose
delay 1is some functiﬁn of the delay of the distinct Pathways
which really exist? This issue is a generalization of an issue
we have been looking at in the context of the ARPANET, which we
call “parallel trunking.” In parallel trunking. a single pair of
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IMPs is connected by two or more trunks, and the same issue of
how to represent them in routing (as individual trunks, or as a
single, composite, trunk)} arises. When the trunks are telephone
1ines, the problem is relatively easy to deal with. Routing can
treat them as a single trunk. with a delay which is the average
delay of all packets sent over the composite trunk. The actual
decision 25 to which particular component trunk to use for
transmitting a particular packet can be made locally, by the IMP
to which the parallel trunks are connected:; there is no need for

routing to play & role in this decision.

In the case where the parallel trunks are of comparable
lengths (so that there is not much difference in the propagation
delays). the trunks can serve & common queue according to the
standard FIFO single-queue multiple-server discipline. If the
trunks are more heterogensous, say one is & terrestrial line and
one is & satellite 1l1ine, a somewh2at more complex Queuing
discipline 1is required, We would 1like to avoid wusing the
catellite 1line wntil the load s such +that if only the
terrestrial line were used, packets would experience & delay
comparable to that they experience over the satellite line. With
this sort of queuing discipline, packets sent to the composite
line experience a delay which is independent of the particular
component (land-l1ine or satellite 1ine) that they use. T hats & s,
no packet is forced to suffer the gquarter-second satellite delay
unless the terrestrial line is so backed up that the delay for
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packets sent owver it is comparable to the delay of packets sent
over the satellite 1ine. This sort of scheme seems to ensure the
best delay performance for the composite trunk. {Actually, the
mathematics of queuing theory suggests that a smaller average
delay for the composite trunk might be achieved by starting to
uUse fhe satellite line sooner. That is, a somewhat smaller
average delay might be achievable if a few packets are given a
much Tungfr delay by being forced over the satellite line sooner
than they would be with the queuing discipline we suggested.
Considerations of fairness would seem to rule that out. however;
how would you like it if your data got a much higher delay so
that someone else's could get a slightly smaller one? In
addition, the gueuing discipline we sugpoested would sesm to
produce a smaller variance in delays. thereby making the measured
average delay on the composite trunk a better predictor of fu?ure
perfarmance, and the better we can predict future performance,

the better performance our routing algorithm can provide. )

Basically, there is no reason for routing to be aware that a
particular line consists of several parallel components rather
than a single .component, because, if the argument abeve 1is right,
any decision as to which component to use can be best made
locally, at the IMP from which the parallel lines emanate. That
is, the global routing algorithm cannot really make effective use
of dinformation about which lines consist of parallel components,
and should not be burdened with information that it cannot wuse.
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This 1is good, since the SPF algorithm cannot really handle
parallel lines between a pair of Switches except by representing
them as a single line. (A careful study of the algorithm would
show that much of the algorithm’'s space and time efficiency would
be sacrificed if it had to be modified to handle parallel trunks
as separate trunks. Since this efficiency is the main thing that
recommends the SPF algorithm over other shortest-path algorithms,
Wwe must pe sure that we don't destroy the effectiveness of the
algorithm by making poorly thought-out changes to it.)

In the internet environment, however, we have a more complex
problem with parallel trunks than in the ARPANET. The scheme we
oputlined for wusing parallel trunks in the ARPANET depends on our
being able to know when the load on the composite trunk 1is such
that exclusive wuse of the faster component would cause delays
that are just as high as we get when we use the slower component.
Thig is not difficult to know if the components are phone 1ines
of one sort or another, since the relation between lToad and delay
is pretty well-defined if we know the length of the lines and
their capacity. If the components of a parallel “trunk®™ are
really packet-switching networks, however, it is much harder to
figure out which components are slow and which are fast, and it
is hard to figure out when the load on the fast component is such

that we have to start using the slow one.

It seems that by separately measuring the delays obtained
pver the "parallel trunks” in the internet case, we ought to De
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able to devise some algorithm for splitting the traffic among the
paraliel Components in a way which gives reasonable
delay/throughput performance. However, we don't yet have a
splution to this problem, which we will put aside for the
present. Whatever scheme we eventually decide on, however,
should be compatibie with treating the parallel components as a
single line at the level of routing. Of course, if we decide to
have different routes for different traffic types (say, excluding
satellite networks for interactive traffic, but using them for
batch traffic), then the problem is eased somewhat -since we
partially solve the problem a priori. There would still be no
need to represent the parallel lines as separate lines. Rather,
we would represent them as a single line, with different delay

characteristics for different traffic types.
4.5 Routing Updates
4.5.1 OQOwerhead

Everyone seems to be in agreement that the overhead due to
routing wupdates should be kept low. At least, no one seems to
advocate that the overhead should be made high. Unfortunately,
“apple pie" pronouncements 1ike this aren't much help in actually
designing a routing scheme. In evaluating a routing algorithm
from the perspective of overhead, one must understand the way in

which overhead is traded off against functionality.

- BT -



IEN 1BY Bolt Beranek and Newman Inc.
Eric C. Rosen

One advantage of the SPF routing algorithm s that it
provides a lot of handles that can be used to control overhead.
In SPF routing, & routing update generated by a particular Switch
identifies each neighbor of that Switch. and gives the delay over
the Pathway to that Switch. Thus the size of an update generated
by a particular Switch is proportional to the number of neighbors
that the Switch has, generally a fairly small number (no more
than & in the ARPANET, and probably of & similar magnitude in the

internet).

In the current Catenet routing algorithm, the size of the
routing updates is a function of the total number of gateways (or
equiua1eﬁt1y. of the total number of component networks). a
number which can increase by a great deal over the years. In the
SPF elgorithm, the size of the updates is a function of the
connectivity of the internet, which could not increase anywhere
near 25 much or as rapidly as the number of gateways. (In the
two years that SPF has been running in the ARPANET, the number of
IMPs has dincreased by & third, with another similar increase
gxpected in the next several months, while the connectivity. &nd
hence the average update size, has remained relatively constant.)
This is important, since we wouldn't want to get ourselves into a
situation where the updﬁte size eventually becomes so big (due to
network growth) that we can no longer fit a whole update into a
single packet (a situation that was imminent during the last days
of the original ARPANET routing algoerithm.) In the internet, the
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maximum size of an update packet is constrained by the component
network which has the smallest maximum packet size. It seems
likely that any component network whose packets are large enough
to carry the enormous TCP and IP headers should have no trouble

carrying the routing updates.

The amount of overhead due to routing updates is not only a
function of the update size, but also of the rate at which
updates aré generated. In the ARPANET, since each IMP averages
the delay on 1its outgoing 1lines over a period of 10 seconds,
changes 1in delay on the lines emanating from a particular IMP
cannot occur, by definition, more often than once every 10
seconds. In addition to generating updates when the delay
changes, wupdates must also be generated when lines go down or
come up. In the ARPANET, & line which goes down cannot come up
for at least 60 seconds. So in an IMP with 5 neighbors. the most
updates that can be generzted in 2 minute is 11 (due to each of
the lines either going down or coming up during the minute. for
5, and a delay change every 10 seconds, for B). It is important
to note that this is the maximum rate at which updates can be
generated, not the average rate. Since IMPs need not generate
routing updates unless they have a "significant change” in delay
to report., the average rate can be much lower., In the ARPANET,
the average rate for generating updates is actually about one per
IMP per 40 seconds. This is a very limited amount of overhead.
Of course, the overhead will dincrease &as the number of IMPs
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increases, because there are just more IMPs to generate wupdates.
However, the amount of overhead 1is always under our control,
since we can always alter the averaging interval, or the
threshold of significant change in delay, to force updates to be
generated less frequently and thereby to reduce overhead. These
same principles apply to the internet alsoc, so it doesn't seem as

if we will be generating enormous amounts of routing overhead.

There " are some things we might want to do which would tend
to make the routing updates longer than so far dndicated. For
example. if we defined several priorities of traffic at the
internst lewvel, and mapped these priorities to different
priorities of some particular component network, we might want to
sgparately measure the delay &across that network for each
priority. We might alsoc want to compute a separate set of routes
across the internet for each priority. If we adopted some such
scheme, we would need to report in sach update several different
delays for each Pathway, indexed by priority. These indexed
delays could then be used for computing a set of routing tables
indexed by priority, allowing traffic of different priorities to
use different routes. 0f course, this would Tlengthen the
updates, adding more owverhead. Part of the decision as to
whether to adopt such a scheme would involve an evaluation of the
trade-offs between the cost of this increased overhead and the
benefit of the expected improvement in performance. The issues,
however. are clear, and there are enough handles contirolling the
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amount of overhead so that we can put into effect any decision we

make,

It is impertant to understand that the number of routing
updates ogenerated by a single internet event (such as the outage
of a gateway access line) is much less with SPF routing than with
the current Catenet routing algorithm. 1In SPF routing, a given
gvent causes the generation of ONE routing update, which must
then be sent to every gateway (thereby giving each gateway an
up-to-date copy of the "whole picture”)}. On the other hand, in
the current Catenet routing algorithm, a single internet event
causes a flurry of updates, as all gateways send and receive
updates EEpEﬁtEd]y to and from each neighbor, until the routing
tables stabilize and the process settles down. This can take
quite & long time and quite a few updates, particularly if the

number of gateways is large.

In addition, in an internet with & large number of gateways,
the wupdates for the current Catenet routing algorithm are very
much larger than the 3FF updates would be. It is clear that the
routing overhead due to a single network event would be much less
with SPF than it currently is. However, if we plan to send
routing updates when delay changes. as opposed to just when a
gateway access line comes up or goes down (as at present), then
we will be generating updates in response to more network events.

This tends to drive the overhead up. Agein. the trade-offs are
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relatively clear here; the amount of overhead simply trades off
against the responsiveness of the routing algerithm to changing
network conditions. The decision as to how to draw this
trade-off can be made as a policy decision, and can be changed if
performance considerations warrant it. The situation with the
current Catenet routing algorithm is quite different., since the
amount of overhead that it generates is almost impossible to
compute. In that algorithm, the number of routing updates
generated in response to a particular event depends on the order
in which +the wupdates are processed by the individual gateways,
something that is essentially random and hence hard to predict.

The SPF glgorithm has no such dependency.

The need for hysteresis in the Pathway up/down protocol run
betwaen neighboring gateways is warth emphasizing. If
connections Bbetween neighboring gateways are allowed to come up
and go down with great frequency. causing a constant flurry of
routing changes, packets in transit will bounce around a lot.
Putting a 1imit on the frequency with which & gateway-gateway
connection can change state dis needed not only to 1imit the
amount of overhead generated, but also to give some stability to
the routing. It 1is -worth noting that the ARPANET, although
providing hysteresis in its own line up/down protocol, does not
provide any hysteresis in host up/downs. Hosts are allowed to go

down and come up repeatedly many times a minute. and this does
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result in problems, causing congestion and instability.
Hysteresis in the gateway's Pathway up/down protocol will have to
be ensured explicitly; we cannot rely on the ordinary host access
protocol of the component networks to do the right thing. That
is, if a network interface goes down, we must keep it down for a
period of time, even if the network itself allows the interface

to come back up immediately.
4.5.2 Profocol

We turn now to the problem of how to disseminate the routing
updates around the Network Structure. Remember that the updates
generated by a particular Switch will contain information about
the delays to the neighbors of that Switch. When & 3Switch
generates an update, it must broadcast that update to ALL other
Switches. As a result. every single Switch will know the values
of delay between every single pair of neighboring Switches. It
is then straightforward to have each Switch run & shortest-path
algorithm which determines the shortest path from itself to each
other Switch. The basic idea is for each 3Switch to know the
entire topology of +the Network Structure, so that the shortest
paths can be determined by a localized shortest path algorithm,
with no need for a distributed computation. In the ARPANET, the
IMPs do not start out with any knowledge of the topology. They
determine who their own neighbors are, and they reconstruct the

rest of the topology from the routing updates they receive.
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It is possible to prove that., as long as all 3Switches have

the same information about the topology and the delays, then they
will produce routes which are consistent and loop-free. (That
is, the situation in which Switch A thinks its best path to B is
through €, and C thinks its best path to B is through A, can
never arise.) However, if some routing updates somehow get 1lost
before being received by every single Switch. then there is no
guarantee of consistent loop-free routing. In fact. if routing
updates get lost., so that different Switches have different
information gbout the topology or the delays. we would expect
long-term routing loops to arise, possibly meking the Network
Structure useless for some period of time. So the protocol wused
to broadcast the routing updates needs the highest possible
reliability. Of course, it will alwzys take some amount of tLime
for an wupdate to be broadcast around the Network Structure, and
during that time, some Switches will have received it and some
not. This means there will always be a transient period when
routing lToops might arise, S0 another aim of the routing
updating protocol must be to keep this transient period as short
as possible. In the ARPANET, we have an updating protocel which
seems to provide these characteristics of extremely high
reliability and low delay. Some of its aspects adapt readily to
the dnternet, but others are more difficult to adapt. Im what
follows, we first describe the ARPANET's routing wupdating

protocol, and then discuss its applicability to the internet.
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Suppose IMP A has to generate a routing update, either
because of some "significant” change in the measured delay, or
because of a line up/down state change. Each update generated by
A has a sequence number, which is incremented by 1 for each new
update. (In the ARPANET., we use 6-bit sequence numbers, which
wrap around after 63.) After creating the update, IMP A sends it
to each of its neighbors. The update is transmitted as a packet
of extremely high priority: only the packets used in the Tline
up/down protocol are of higher priority. We use the notation
"A(n)" to refer to the update generated by IMP A with seguence
number n. Now let's look at what happens when a copy of update
Af{n) is received by an IMP B. (IMP B 1is intended toc be an
arbitrary IMP somewhere in the network. possibly identical to A
or to one of A's neighbors, but not necessarily so.) If B has
never received an wupdate from A before, it "accepts™ A(n). by
which we mean that it (a) remembers in its tables that ths mast
recsnt update it has seen from A is A(n) (i.e., the sequence
number n, the 1ist of neighbors of A, and the delzys from A to
each neighbor are stored in B's tables), (b) it forwards A(n) to
each of its neighbors, including the one from which it was
received. and (c) the SPF algorithm is run to produce a new set
of paths. given the new.delay and topology information contained
in A(n). If B has received an update from A before, it
determines whether A(n) is more recent than the update it has

already seen, and “accepts"” it (as just defined) if it is;:
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otherwise it simply discards A(n). The determination as to
whether A(n) is more recent than some previously received update
A(m) is made by a sequence number comparison (which, of course,
must account for the fact that sequence numbers can wrap around);:

A{n) is not considered to be more recent than itself.

If one thinks a bit about this inductive definition of the
protocel, one sees that each IMP in the network will receive
every wupdate which is generated by any IMP, and further that it
will generally receive a copy of each update on each of 1its
lings. This means of broadcasting an update from one IMP to all
other IMPs is called "flooding.” 1t is highly relizble. since
updates cannot be 1lost in the network due to IMP crashes or
partitions. If there is ‘any path at all between two IMPs,
flooding will get the update from one to the other. (Of course.
if there i3 no path at &11 from A to B, then updates cannot get
from one IMP to the other. However, this is not a2 problem. since
if traffic from A cannot even reach B, then it cannot use B's
putgoing lines, so there is no need for to know the delays of
B's outgoing lines in this case. In saying that flooding
prevents updates from getting lost due to network partitions, we
are thinking of the case where an update is in transit from A to
B when a partition furmé. such that A and B are 1in the same
partition segment, but the update is in a segment which is now
isolated from either A or B. Flooding ensures delivery in this
situgtion.)
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Flooding also ensures that an wupdate travels over the
shortest (in terms of delay) possible path. Basically, every
possible path 1is attempted, so the update necessarily gets
through first on the shortest path, by definition. In addition,
this means of transmitting routing updates does not depend in any
way on the routing algorithm itself. Since routing updates are
sent out all lines, there is no need to 1look in the routing
tables to decide where to send the routing update. The
transmission of routing updates is independent of routing, which
eliminates the possibility of certain sorts of disastrous

negative feedback.

One might think that a protocol which sends a copy of every
update on every line creates 2 tremendous amount of ovarhead. In
the ARPANET. however, the average update packet size is 176 bits.
and the average number of updates sent on each line (in each
direction) is less than 2 per second. for &n averags overhead of
less than 1% of a 50 kbps 1ine. And this is with glmost 75 IMPs

generating updates.

Of course, a protocol like flooding is only as reliable as
are the indi?idua] point-to-point transmissioens from IMFP to
neighboring IMP. We ensure reliability at this Jlevel with a
positive acknowledgment retransmission scheme. HNote, however,
that no explicit acknowledgments are required. If IMP X sends

update A(n) to neighboring IMP Y., and then X receives from Y an
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update A(m), where A{m) 1is at least as recent as A(n)., we
consider that Y has acknowledged X's transmission of A(n). Since
an IMP which accepts an update sends it to all neighbors,
including the one from which it was received, in general, if X
sends A{n) to Y., Y will send A(n) back to X, thereby furnishing
the acknowledgment. We say "in general”, since there is a little
further twist. As another reliability feature. we make each
update carry complete information, and forbid the carrying of
incremental information in updates, That 1is, each and every
update generated by an IMP A contains all the latest information
gbout A's neighbors and its delay to them, se that each update
can be fully wunderstood 1in dsolation from any that have gone
before. This means that if wupdate A{n+1) 1s received and
processed by some IMP B, then the prior wupdate A(n) 1s
syperfluous and can just be discarded by B. In particular. if
1P % sends A(n) to neighboring IMP Y while at the same time Y 1s
sending A(n+l1) to X. then X can interpret the receipt of A{n+1)
from Y as an acknowledgment of the receipt of A(n): that is, X no
longer has to worry about retransmitting A(n}. since that update
is no Jlonger needed by Y. If no "acknowledgment” for an update
is received from a particular neighbor within a specified amount
of time, the update is vretransmitted. Of course, it must be
specially marked as a retransmission, so that the neighboring IMP
will always "acknowledge"” it (by echoing it back), even if the

neighbor has seen it before. This is needed to handle the case
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where the update got ihrough the first time, but  the
acknowledgment did not. It should also be noted that all the
information in a routing update must be stored in each IMP's
tables 1in order to run the S5PF computation. This means that if
it is necessary to retransmit an update to a particular neighbor,
the updete packet can be re-created from the tables; it 1is not
necessary to buffer the original update packet pending

acknowledgment.

We must remember that if congestion forms in some part of
the network, we want routing to be able to adapt in & way which
can route traffic around the congestion. For this to have any

Fa

hope of working. we must be sure that ROUTING UPDATES WILL BE
BBLE TO FLOW FREELY. EVEN IF CONGESTION IS BLOCKING THE FLOW OF
DAaTA PACKETS. Therefore, routing updates in the ARPANET are not
sent by the ordinary IMP-IMP protocel, which provides only 8
logical channels between & pair of IMPs. That would be
disastrous, since congestion often causes 211 B logical channels
to f911 up and remain filled for some time, blocking further data
transmission between the IMPs. Transmission of routing updates
must be done in a way that is not subject to this sort of
protocel blocking during periods of congestion. (This sort of
"put-of-band” signa]]iné was quite easy to put into the ARPANET.
However, it is worth noting that such protocols &s HDLC make no
explicit provision for out-of-band signalling, and it seems that
many networks are being built in which the routing updates will
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not be able to flow when the network gets congested. Designers
of such networks will no doubt be quite surprised when they
discover what is dinevitable, namely that  their routing
algorithms break down completely in the face of congestion.) We
also want to be sure that we have enough buffers available for
holding routing updates, and that we process them at a relatively

high CPU priority.

There 1is one more twist to the updating protocol. having to
do with network partitions. A network partition is a situation
in which there are two IMPs in the network between which there is
no communications path. MNetwork partitions, 1in this sense, may
be as sihp1e as the case in which some IMP is down (an IMP which
is down has no communications path to any other IMP), or as
complex &s the case 1in which four 1line outages result in
partitioning the network into  two groups of 40 IMPs. When a
pertition ends, we have to be sure that the two (or more)
segments do not get logically rejoined until routing updates from
all IMPs 1in each segment get to all the IMPs in the other
segments. That is, data packets must not be routed from one
segment to the other wuntil 211 IMPs 1in each segment have
exchanged routing updates with all IMPs in the other segments.
Otherwise, routing 1uup§ are sure to form. We must also remember
that the segquence numbers of IMPs in one segment may have wrapped
around several +times during the duration of the partition.
Therefore we must ensure that IMPs in one segment do not apply

- B0 -



IEN 189 Bolt Beranek and Newman Inc.
Eric C. Rosen

the wusual sequence number comparison to updates from IMPs in the

other segment.

We have dealt with these problems by adding the following

three time-outs to the updating protocol:

1) MAXIMUM INTERVAL BETWEEN UPDATES: Every IMP is required
to generate at least one update every minute. whether or

not there has been any change in delay or Tine state.

2) MAXIMUM UPDATE LIFETIME: If an IMP B has not received any
updates generated by IMP A for a whole minute, then B
will “"accept” the next update it sees that was generated

by &, regardless of the sequence number.

3) WAITING PERIOD: When a line is ready to come wup, 1t s
held in & special "waiting” state for & minute. whilg in
the waiting state, no data can be sent on the line.
However, routing updates are passed over the line in the

normal way, as if the ling were up.

Since the ending of a partition is always coincident with
soma line's coming up, these +three features ensure that a
partition cannot end until a full exchange of routing information
takes place. They also ensure (given the facts that there is a
6-bit sequence number space and that IMPs can generate at most 11
updates per minute) that sequence numbers of wupdates generated
after the end of +the partition are not compared with sequence

numbers of updates genereted before the partition occurred.
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The general idea of flooding the updates seems as important

in the internet as in the ARPANET. 1In general, we can expect the
internet to be subject to many more mysterious ocutages and
disturbances than is the ARPANET, and the reliability and speed
of flooding will be essential if an internet routing algorithm is
to have any hope of working. The issue of overhead may be
somewhat worrisome, though. If an IMP has to send each of A4
neighbors a copy of each update. it is just & matter of sending a
copy of 2 small packet on each of 4 wideband lines. On the other
hand, if a gateway has to send a copy of each update to each
ngighbor. this may mean that it has to send 4 copies 1into a
single network, over & single network interface. This may be
somewhat more disruptive. Of course, this problem only exists on
networks which do not have group addressing. If & network allows
the gatewzys to be addressed as a group., then each gateway ngeds
only to place one copy of each update into the network, and the
network will take responsibility for delivering it te sach aothar
gateway. (This might result in each gateway's recesiving back its
own copy of the update, since the sending gateway will also be
part of the group, but that is no problem. As long as the
cateway can identify itself as the transmitter, it can just throw
away any updates which it transmitted to itself.) This idea of
sending the updates to all neighbors on & particular network by
using group addressing fits in well with an idea expounded in

section 4.1, namely the idez that a network should be able to
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tell which of its hosts are gateways, and should inform the other
gateways when a new gateway come wp. This same mechanism could
be used by the network to augment its group addressing mechanism,
to allow the group definition to change dynamically  and
automatically as the set of gateways connected to it changes.
Unfortunately. few networks seem to have group addressing. Even
SATHNET has cnly a primitive group addressing feature, although it
seems odd to have a broadcast network without full group
addressing capabilities. (Group addressing is much more complaex
on & distributed network 1ike ARPANET than on & broadcast
retwork.) Ferhaps as further interngt development proceeds. more
of the compeonent networks will add group addressing. in order to

make their use of the internet more robust and efficient.

Retransmission of routing updates on &
gatewzy-to-neighboring-gateway basis, based on the scheme in the
AREAMNET. also seems to offer no problems in principle. Howsver,
the retransmission time-outs might have to be carefully chosen.
and tuned to the characteristics of the network connecting the
sending and receiving gateways. The retransmission time has to
be somewhat Jlonger than the average round-trip delay in that
network, and this may vary considerably from network to network.
In principle, hDWEUEF; this is no different from the ARPANET,
where the retransmission timers for routing updates  wvary
according to the propagation delay of the phone line connecting
two IMPs.
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There is a bit of & subtle problem that we discovered in the
ARPANET, having to do with the scheme of wusing the updates
themselves as acknowledgments. Suppose Switch A has two
neighbors, B and C. A receives a copy of update u from B, and
queues it for transmission to C. However, while u is stil11 on
the queue to C, A receives a copy of u from C. If A had already
sent w to €, this copy from C would have served as A's
acknowledgment that € had received the update. But now, with wu
on the queue to C, if we are not careful, A will send u to C
after having received a copy of u from C. When C gets this copy
of u Tfrom A it will not accept it (since it has already seen a
copy of u and sent that copy on to A), which will cause A to

retransmit u to C. resulting in an unnecessary retransmission.

In the ARPANET, we deal with this problem by turning on the
retransmission timer as soon as an wupdate is received, rather
then when it is sent. That way, an update which is still gueued
for transmission when its "acknowledgment” is received will still
get transmitted unnecessarily. but the retransmission timer gets
shut off, causing only one, rather than two, unnecessary
transmissions. A more logical scheme would be to check the
transmission qgueue to a Switch whenever an update is received
from that Switch. If a.cupy of the same wupdate that was just
received 1is queued for transmission, it should just be removed
from the gueue. This would prevent any UNNECessary
transmissions. In the ARPANET, a few unnecessary transmissions
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don't really matter, but in the internet, if we really want to
keep the overhead low, it is probably worthwhile trying to get
this just right. We must remember that network access protocols
may limit the number of packets we can get into the network
during some period, which makes it all the more important to

avoid sending unnecessary packets,

Suppose we find that for some reason or other, it is taking
a very long time to get updates from some gateway to one of its
neighbors.  This would show wup as an excessive number of
retransmissions of updates. In such a case, we would probably
have to consider that particular gateway-gateway Pathway to be
down. irrespective of what our ordinary Pathway up/down protocol
tells us. Remember that in order to ensure consistent and
loop-free routing. we must get the updates around the internet as
rapidly as possible. 1f updates cannot travel sufficiently
rapidly on some Pathway. then we just cannot use that Pathway at
211 for transit within the internet. Attempting to keep that
Pathway up for transit can result in relatively long-term routing
loops. which could in turn cause a degradation in network
performance which swamps the degradation caused by not using that
Pathway at all. Especially disastrous would be a situation in
which ordinary data packets could pass, but routing updates, for
some reason, could not. It is hard to know what might cause such
a situation (perhaps a bug in the component network that we are
using as a Pathway), but it is certainly something we need to
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protect against. (Note, however, that even if we declare some
pateway-gateway Pathway down., it does not follow that the network
underlying that Pathway cannot be used as a terminus network, to
which data for Hosts can be sent and from which data from Hosts
can be received. Even 1if some network 1is not wusable for
providing a Pathway between two gateways on it, it may still be
vseful for providing a Pathway between the gateways and some set

of Hosts.)

We hauelemphasized the need to transmit routing wupdates as
“put-of-band” signals, which bypass the ordinary communications
protocols (such as the IMP-IMP protocol in the ARPANET). so that
when congestion forms which causes those protocols to block. the
routing updates can still flow. That is, we would Tike to have 2
protocol which is both non-blocking and non-refusing. This may
be quite difficult to achieve in the internet environment. where
sending an update from gateway to pateway requires us to use
whatever network access oprotocol is provided by the Pathway
network. Here our most difficult problem might be with the
ARPANET's 1822 protocol. which can cause blocking of the network
interface for tens of seconds. We really can't delay sending a
routing update for 15 seconds or so while the IMP is blocking, so

whenever this happens we would have to declare the pathway down.

In the ARPANET, we have two ways of +trying to deal with

this. One way would be to send all packets into the ARPANET as
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datagrams, which cannot cause blocking. Another way would be to
use the standard virtual circuit interface, but to obey the flow
control restrictions of the ARPANET (i.e., to control the number
of outstanding messages between & pair of hosts)., and to avoid
the use of multi-packet messages (which can cause blocking if the
destination IMP is short of buffers., as ARPANET IMPs chronically
areg). There are other situations in which blocking can occur,
but they 211 involve & shortage of resources at the source IMP,
and in such cases declaring the Pathway to be down is probably
the right thing to do. We do not want to be forced into
declaring Pathways down simply because we have ignored some
protocol restriction, but it seems much more sensible to declare
a Pathwey down if, say, the IMP to which a gateway is attached 1is

too congssted to provide reliable service for internet packets.

It is important to note that whatever restrictions we apply
tc our use of the network access protocol apply not only to
routing updates, but also to all messages sent intc the ARPANET
from the gateway. It would do no good. for example, to send in
routing updates as datagrams, while using non-datagrams for other
packets, since this would allow the other packets to block the
routing wupdates. At this point, it is not quite clear just what
the best scheme would bé. The use of datagrams enables us to get
ground the sometimes time-consuming but often unnecessary
resequencing which the ARPANET performs before delivering packets
to the destination host (it is neither necessary nor desirable

- B7 -



IEN 188 Bolt Beranek and Newman Inc.

Eric C. Rosen
for the ARPANET to resequence routing updates before delivering
them to a gateway), but it also reduces the reliability of
transmission through the ARPANET, and it is not obvious how this
trades off. For each network which we intend to use as a
component of the internet, we will have to carefully study the
details of 1its network access protocol, and possibly do some
experiments to see how the varipus details of network access
affect the performance. 1in terms of delay., throughput, and
relizbility of the network. Only by careful attention to the
detzils of network access on each particular network, and by
continuing measurements and instrumentation in the gateways to
see if we are getting the expected performance from the component
networks. can we hope to make the routing updating protocol quick
and reliable enough to ensure consistent and loop-free routing
throughput the internet. There are 2 few general principles we
might appeal to. such as making routing updates be the highest
priority traffic that we send into the component networks.
However, it is difficult to be sure & priori what effect even so
straightforward a principle might have. It's not hard to imagine
a poorly designed network in which low priority packets receive
better performance than high priority ones, under certain
circumstances. To make.the internet robust, we need to be able
to detect such situations (and to gather enough evidence, via
measurements, to enable us to point the finger convincingly), and
we cannot simply assume that a component network will perform as

advertised.
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If we might digress a 1ittle, the considerations of the
preceding paragraphs raise an interesting issue with respect to
the wuse of fragmentation in the gateways. We raised the
possibility of not using multi-packet ARPANET messages. and such
a strategy would doubtless require more fragmentation than is
presently done., Fragmentation in the gateways has Tlong been
thought of as a necessary evil, necessary because some networks
have a sma]?er maximum packet size than others. If a gateway
receives a packet from network A which is too large to fit into
network B, then the gateway must either fragment it or drop it on
the floor. However, perhaps fragmentation is sometimes useful as
an optimization procedure. That is, some network may have a
suitably large maximum packet size so that fragmentation is,
strictly speaking, uﬁnecE35ary, Nevertheless. the nstwork might
actually perform better if given smaller packets. so that
fragmentation provides better performance. We sse this in some
current Catenet problsms. It szems that the BEN-gateway between
ARPANET and SATNET often receives packets from SATNET which are
2000 bits 1long, or twice the size of an ARPANET packet. The
gateway then presents these messages to the ARPANET as two-packet
messages. As.it happens, two-packet messages generglly give the
lowest possible throughput on the ARPANET (a consequence of the
limited buffer space at the destination IMPs and the fact that
the ARPANET assumes that all multi-packet messages will contain 8

packets): the gateway could probably obtain better performance
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from the ARPANET by fragmenting the two-packet message into two
single-packet messages. Of course, the situation is5 a bit more
complicated in general than this may make it seem. If messages
are being sent from a source host through SATNET and then through
ARPANET to a destination host, best performance might well be
achieved by sending the messages as Z000-bit messages through
SATMET. then fragmenting them and sending them as 1000-p7it
messages t?ruugh ARPANET. Howewer. what if the messages must Qo
beyond ARPANET, through another network, which handles 2000-bit
messages more efficiently than 1000-bit messages? This sort of
strategy, if useful at all, is best done in combination with the

hop-oy-hop fragmentation/reassembly scheme suggested in IEN 187.

The part of the routing updating protocel which deals with
recovery from partitions (including the degenerate case of
initialization when 2 Switch comes up) is somewhat more tricky to
apply to the internet environment. 1In the ARPANET, we have &
number of one-minute timers. Each IMP must generate an update at
least once per minute; a line that is ready to come up must
participate im the updating protocol for a minute before being
declared up: and an update that has been held for a minute in an
IMP, with no Tlater update from that update’s source IMP having
been seen, is regarded as "old”, in the sense that 1its seguence
number 1is no longer considered when the IMP is deciding whether
the next update it sees (from the same source) is acceptable. In
attempting to adapt these procedures to the interngt., we must
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take notice of the way in which these timers interact with each
other and with other features of the idnternet. Consider. faor
example, the Tlength of the maximum update 1ifetime, which
determines how long an update's sequence number remains velid for
the purposes of judging the acceptability of the next update.

There are two restrictions on the length of this timer:

1) A Switch A should not time ocut an update whose source
Switch 1is B wunless there really is a partition which
destroys the communication path between A and B
{remember, this includes the degenerate case of a
partition where B simply coes down). This means that the
time-out period must be greater than the sum of the
maximum interval between updates PLUS the maximum amount

of time that an update from B could take to get to A.

2} The sequence numbering scheme used for the wupdates must
be such that the sequence numbers cannot wrap around 1n &
period of time which 1is 1less than the maximum update

life-time,

In the ARPAMNET, the sequence numbers cannot wrap in Tless
then & few minutes, each IMP generates an update at least once
per minute, and the timé to get that update to all other IMPs is
negligible when compared to a minute, so a maximum update
lifetime of one minute s fine. In the dinternet. however, we
could not expect to measure transit times in the hundreds of
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milliseconds: tens of seconds would be more like it. So even if
we forced each gateway to agenerate at least one update per
minute, we would still need a maximum update l1ifetime of several
minutes. And the longer our maximum update 1ifetime, the larger
our sequence number space must be (to prevent wrap-around), which
megns additional overhead (memory and bandwidth) to represent the

sequence numbers.

A similar constraint applies to the "waiting period”. The
puUrpose of the waiting period is to ensure that when a
ceteway-gateway Pathway is ready to come up, it is not permitted
to carry data until an update from each other gateway traverses
it. Cleerly. for this to have the proper effect, the waiting
period must be longer than the sum of the maximum transit time
plus the maximum interval between the generation of updates from
& single gateway. We would probably also have to set this to
several minutes. This does have & SErious operational
consequence, namely that no outage will persist for less than
several minutes. This can be an inconvenience, Jlengthening the
time it takes to put out & new software release to all the
gateways, for example, and possibly affecting the MTTR
statistics, but it is something we just have to live with. Note.
by the way, that as.1nng as the waiting period is at least as
long as the maximum update 1lifetime, a gateway that restarts
after a failure (or a reload) can start generating updates with
sequence number 0, irrespective of what sequence numbers it was
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using before, since all its prior updates will have timed out (if

the timers are set right).
4.6 Limitations of Internetting

This discussion of routing in the internet points out some
of the inherent 1imits of dinternetting. Good performance
requires the use of & routing updating procedure which broadcasts
the updatgs in a very reliable and quick manner. Anything that
delays the routing updates, or makes their transmission l1ess than
reliable. will lengthen the amount of time during which different
Switches have a different "picture” of the WNetwork Structure,
which in turn will degrade performance. We believe that the
updating protocol we deve1nhed for -the ARPANET solves these
problems in the context of the ARPANET. It seems clear, however,
that brozdcasting routing updates in the internet is just going
to be slower and less religble tham it s din fthe ARPANET.
Although the same principles seem to apply in both cases. the
characteristics of the internst Pathwzys are not sufficisntly
stable to ensure the speed and reliability that we really would
1ike to have. It is going to be very hard to ensure that we can
get our routing updates through the various component networks of
the dnternet in & timely and reliable manner, and it may be hard
to get the component networks to handle the internet routing
updates with enough priority to prevent them from being blocked

due to congestion. This is going to place a limit on internet
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performance which we cannot avoid no matter what architecture we

choose.

The only way to eliminate this sort of problem would be to
have the component networks themselves give special treatment to
internet control packets, such as routing updates,. Currently,
the component networks of the internet treat internet control
packets as mere data. We have suggested that in some cases, it
is impossible to meet certain of our goals without special help
from the underlying networks. For example, in our discussion of
the “gateway discovery protocel”, we argued that preserving the
maximum flexibility for making topological changes in  the
internet requires cooperation from the underlying networks. This
point ca&n be generaiized. though. The more cooperation we can
get from the underlying networks, the better we can make our
internet routing algorithm perform, and the better we can make
the internet perform. We would recommend therefore that serious
consideration be given to modifying the component networks of the

Catenet to maximize their coopergtion with the internet.

Even 1if the component networks of the internet cooperate to
the fullest, there 1is another problem which may 71imit the
responsiveness of the internet routing algorithm. If there are
very long transit times across the internet, much longer than we
ever see in individual networks 1ike +the ARPANET, then the

responsiveness of routing is necessarily held down. This factor

- 94 -



IEN 189 Bolt Beranek and Newman Inc.

Eric C. Rosen
will place a natural restriction on the growth of the internet.
At a certain point, it will become just too big to be treated &s
a single MNetwork Structure, so that further growth would make
routing too non-responsive to provide good service. That is,
eventually we reach a point of diminishing returns, where adding
more Switches, or even adding more levels of hierarchy, begins to
significantly degrade service throughout the internet by making
the routing algorithm too non-responsive, It is important to
understand that the notion of "big"” here has nothing to do with
the number of Switches, but rather with the transit time across

the internet.

If there ars two Hosts which cannot, for rezsons like this,
be placed on the same internet, it may still be possible for them
to communicate. though at a somewhat reduced level of efficiency.

E

=

™

c of the Hosts would have to be on some internet. but not
ngcessarily on the same one. Suppose. for exampls., that there
are two different dnternets, internet A &nd internet B, which
cannot be combined into one larger internet because the resultant
internet would be too large to permit & reasonably responsive
routing algorithm, However, it 1is 5till possible for each
internet to model the other one as an Access Pathway. Suppose
that Host H1 on inteEnet £ needs to communicate with Host HZ on
internet B. Then if a Switch SA of internet A ceén be connected
to & Switch SB of internet B. the internet A ci&n represent Host

H2 as being homed to its Switch S5A, via a Pathway (of whose
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internal structure it is unaware) which is actually internet B.
A corresponding mapping can be made 1in the other direction,
permitting full-duplex communication. However, neither internet
could use the other as an internal (i.e., Switch-Switch) Pathway,
or the resulting configuration would  be insufficiently
responsive. (This may seem akin to the regionalization against
which we argued in section 4.3.4. However, since neither
internet wuses the other as an internal Pathway. there are no
problems of looping.) MNaturally, just as Hosts on a common
network can expect to get more efficient communications than can
Hosts which must communicate over an internet, Hosts on a common
internet will get more efficient communications thean will hosts

on different internets.

There are other reasons besides non-responsiveness which may
makes it imperative to have separate internets which cannot wuse
each other &s internal Pathways. For exemple, twa internets
might cover the same “territory,” geogrephically speaking. but
may be wunder the control of two different organizations, or may
use essentially different algorithms or protocols. In fact,
several different internets might even cover the same set of
Hosts. and consist of the same set of component packet-switching
networks. [It" as imﬁortant to remember that it is the set of
gateways which constitute the internet, not the set of component
networks. Imagine if every ARPA-controlled network had a Brand X
gateway and a Brand Y gatewsy. Then there would be two separate
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internets, Brand X and Brand Y, which are logically rather than
physically separate.) Our procedure of having each internet
regard the other &s an Access Pathway to a set of Hosts. but not
as an Internal Pathway. allows communication among Hosts on the
different internets. without introducing problems of looping, and
wh11e.pr955rv1ng the maintainability of the individual internets.
Of course if the two internets have different &ccess protocols,
then the ?witches of one or the other internet {(or both) must be
prepared to translate from one protocol to the other, but that is

2 simpler problem than the ones we have been dealing with.
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