JEM: 35
Section: Z2.5.2.4.3

; MASSACHUSETTS COMPUTER ASSOCIATES, INC.
. 26 Princess Street
Haokefield, Massachusetts £1838

File Package:

The File Handling Facility for the
Mational Softuare Works

by
Paul M. Cashman
Ross A. Fansuf
Charles A. Muntz

Revised
December 27, 1976
CADD-7B612-2711

This work was supported by the Advanced Research Projects Agency of
the Department of Defense and by Rome Air Development Center. 1t
1as monitored by Rome Air Development Center under contract number

F3B6B2-76-C-B834.

Chapter 1:

Ch@pter 22

I In

Tol¢s Th
I11. Fi
1V. Fi

Chapter 3:

Chapter 4:

Chapter G:

Appendix A

Appandix B

TABLE DF CONTENTS

Overvieu

File Package Functions
troduction
e Phuysical Copy Descriptor, Global File
Descriptor, and the NSY File Catalog

le Package Functions
le Package Interfaces wia HSG

File Package Structure
An Intermediate Language for File Transfer

Translation Semantics

33

38

42

46

54

PHEFACE

Charles Muntz and Paul Cashman were responsible for

the first version of the File Package Design
Spacification (MCA Document Number CADD-VEBEZ-Z2011].

This document was dated February 28, 1976. Hoss Faneuf

is the chief author of this revison of the File Package
Design Specification (MHCA Document Number CADD-7B12-2711).

The reader of this document is assumed to have read
"M5G: The Interprocess Communication Facility for the
National -Softuare Horks" (Massachusetts Computer
Associates, Inc., Document Number CADD-7B12-2411,
Bolt Beranek and N=uman, Inc., Report Number 3237).

FILE PACKAGE DESIGN SPECIFICATION

Chapter 1:
Dvervieu

The primary function of the NSH File Package (FP)
is the transportation of physical copies of user files into
and out of NSW file storage space. This usually {and most
importantly) occurs in order to place acceptable physical copies
of N5SW files in tool workspaces as input files, and to move
output files from these uworkspaces back into the NSW file
system. Part of this function is to make output from one tool
available and acceptable to another tool, even if these
reside on different hosts. Secondary functions include "importing"
user files into NSW space under direct user request; "exporting",
the complementary operation, and maintenance of NSH file space
{i.e. phyusical copy deletion).

A File Package resides on every NSW Tool Bearing Host (TBH).
Every such host also includes some NSH-controlled file space uwhich
provides storage space for phuysical copies of NSW files. Only
NSW (Uorks Manager and/or FP) has access to this space. (Additionally,
NSW will control the workspaces used by tools: the FP considers
these to be external to NSW file space)l. The Works Manager (W)
contains a catalog of NSW files:; the NSW file system consists of
all files entered in this catalog. At one level, an NS file
consists of an N5W file name, a list of physical copy descriptors
for each copy of the file, and & global tupe descriptor which
records the physical and structural attributes of the file. (See appendix A}
The NSW name is (usually) assigned by the user and is syntactically
uniform for the entire NSUW file system. Each physical copu
descriptor includes the network address of its storage host, and all
information required to access the file; this information is
meaningful only to thea operating sustem of the storage host, and is not
uni form accross the file system. The global tuype descriptor contains
the information needed to encodefdecode the file for transmission
of the file betueen hosts in different families, ;

The multiple physical copies are logically
indistinguishable, and the choice of which will be used in a given
operation is of no concern to .the user -- indeed, cannot be affected
by him, as he has no access to the physical copy list. - The
logical equivalence is clear uwhen physical copies reside on several
machines running the same operating system (a "host family"),
but less so for copies residing on different host types. MWe
assert equivalence based on the following notion: at the logical
level, the physical copies represent identical sequences of lines
{or records}; wuhenever the NSU file system has been able
to capture and encode the physical/structural attributes of the file
on its native operating system, translation of the file betueen
different hosts, preserving logical equivalence, becomes possible.

The WM grants access to given files by given users: once
granted, it is the FP's task to make a suitable physical copy
available for,the desired access {direction of the file motion is

((

‘FILE PACKAGE DESIGN SPECIFICATION

imhaterial)l. Tuo FP's are involved in a copy cperation if no

local source copy exists: "receiver" FP on thz host
desiring the copu: and "donor" FP on a host containing an existing
copy. The receiver FP drives the copy procedure: it has the task

both of choosing the donor copy, 2nd creating a copy uwith
quivalent logical structure.

The receiver FP is given the right to select among multiple
physical copies if more than one exists.

Three cases exist:

1}. Local copy: There is an original on receiver's host.
2. Feamily copy: There is an original on a2 foreign host
in the same operating system family,
supporting the local file formats.
3). MNon-Family copy: There is an original on a host which
does not support the local file formats.
Translation is forced.

Local Copy

The most efficient way to make the copy is by using an original
on the local host. The local copy procedure can be implemented entirely
Hithin the local operating system, but serves to identify procedures
common to other modes of copying. Only the one FP is involved in a
local copy operating.

Family Copy

The analogy uwith archival of files on magnetic tape is useful.
Suppose the host operating sustem supports archival. Such a process
encodes an arbitrary file in serial fashion so that the original
file may later be reproduced in programmatically indistinguishable
fashion. We characterize the save portion of the operation by
the following steps:

Al. Locate thz contents of a named file.
AZ. Read its physical structure characteristics.
A3. Hecord its physiccal structure.

A4, Until end-of-file

A4R. Read a "block" (machine dependent unit) of
the file and serially encodz it.

FILE PACKAGE DESIGM SPECIFICATION

Atll, UWUrite the block on tape.

AS5. Close the file.

A similar procedure is used to restore the file.

The "save" procedure is exactly what the donor's FP needs
to send a family copy, while the "restore" procedure is used
by receiver; a one-way N5G direct connection assumes the role
of the magnetiec tape. Thus, tuwo hosts in the same family ‘can
exchange files with as much fidelity as one finds With save/restore.
Host families will use a private (i.e., determined by a consensus of
implementors in that family) dump/restore encoding for
file transfers among members.

Non-Family Copy

Khen no family copy exists, the receiving FP must
attempt to reproduce the logical structure of a file in the local
file format. The receiver exercises its right to choose the donor
copy. Once selected, the donor’s FF will be asked to send an
encodement of the file, uhich the receiver FP must then decode and
store.

The file encodement has tuo components: one component is
a global file type descriptor, which describes the physical and
structural attributes of the file. This descriptor is
available from the LM, keysd by a glebal file type string. There
is a unique descriptor for each native file format recognized
by NSU. : '

The second component is an intermediate language (IL) which
encodes the file contents. The syntactic productions which may
legal ly appear in the encodement of a file depend on its global
file type —— for instance, IL sequence numbers may not appear in the
encodement of a file with no keys.

Together, these components form a system for encoding files for
transmission and translation betusen unlike hosts. The system has
several properties:

1) It must preserve a maximum of the information contained
in the logical structure of the file as created on its

native operating system

=d

2) 1t should be host independent

3) It should include compaction for efficient network
transmission

.
t

FILE PACKAGE DESICGN SPECIFICATION

4} 1t should be reasonably easy io encode and decode

Several chapters of this document are devoted to th=
specification of this system. Ue feel that ra existing physical
file encodement adequately satisfies the above criteria, and
therefore use a (new) technigue that is nobody's encodement. Itis
compression techniques apply equally well to binary and text files,
and is still a reasonable encodement for ths private intra-family
dump/restore copy.

Notes:

This specification only datails operations on sharable
devices - disks., The status of non-sharable devices is not currently
clear enough to allou a detailed presentation. UWe still omit a
discussion of the following issues:

7+ Device assignment

7t Device control

%t DOperator communications

w+ Standard device names

Tuo hooks in the FP a2llou for expansion toward non-sharable
devices:

1) The physical copy descriptor (se=s } allous
host-dependent strings for the phusical copy name and location)
physical device descriptor. These elemants can name and locate files
on non-sharable devices.

2) The IL includes productions which allow files on a tape volume
to be moved as a related group. (See Chapter 4.}

=

FILE PACKAGE DESIGN SPECIFICATION

Chapter 2:
File Package Functions
1. Introduction

This chapter deals With the functions performed by the File
Fackage. UWe first describe in some detail the several main kinds
of information that are passed to FP's as arguments -- particularly
the phusical copy descriptor and global file descriptor. MWe then
describe the externally callable FF procedures, and finally the
internal procedures which implement cross-netuork copy operations.

Many of the above are described tuice -- first, in rather
genzral terms in order to convey the conceptual elements of the
specification, and second to give an exact specification for the
calling sequences, form of arguments, etc. The reader is assumed to be
familiar with the spec for MSG, ... uwith the NSWB2 message encodement,
~and the NSUTP for inter-component procedure calls.

[{--

‘FILE PACKACE DESICMN SPECIFICATION

I1. The Physical Copy Descriptor, Global File Descriptor, and
and the NSU File Catalog.

1. Introduction

Four pieces of information about files are passed to FP's.
Depending on the function (procedure) invoked, all may be present,
or only a subset. The particular cases will be clear in the
specification of the FP interface. The four items are:

1} Phuysical Copy Descriptor

2) Filespace (directory) passuord
3} Global File Type string

#) Global File Descriptor

Ue may quickly dispose of (2} and (3). The directory
passuord grants access to the physical file copy filespace specified
in (1). It is a separate item so that it may be omitted uhere
possible li.e. for NSW filespace)l. As a security precaution.

ITtems {3} and (4) are in direct relation: (3) is the key which
locates (4) in the WH's Global File Type Table. (See appendix ...).
At this point, it may be fruitful to see appendix B.
Both are included for convenience (efficiencyl. A FP for which the
global file type is native uwill not need to refer to the global
file descriptor.

Ue nou proceed to a discussion of (1).

2. The Physical Copy Descriptor

It must be possible to locate each physical instance of a
file which participates in a FP operation; the Phusica! Copy
Descriptor (PCO) contains this information. A PCD is a list of
follouwing file components:

HOST {integer} Network address of host where file
is stored
DIRECTORY {string} MName of directory in which file
is stored
NAME (string) Host-dependent file name
PHYS (string) Host-dependent location information
ILFLAG (boolean) TRUE if file copy is an IL encodement

The first four items continually refine the specification
of the location of the physical file copy. The encodement flag is
included in the PCO because it must be set on a per-copy basis.
e nou discuss the four location-specifying items.

-G

FILE PACKAGE DESIGM SPECIFICATION

A. HOST

This integ=r must be correctly set for any existing physical
file copy, and correctly returnsd by a FP generating a nen physical
copy. It is the only component of a PCO meaningful to any FP, no matter
uhether the file copy described is in the local file space or not:
Indeed, a FP bases its analysis of the kind of copy operation
specified on this information (local, family, non-familyl. The
netuork addresses are interpreted as precisely those used by MSG
as a component in process addresses. (Note: the local host address
is available to a FP through the WhoAml primitive in MSG).

B. NANE

This string contains the file's name, necessarily in
the format of the operating system where the physical copy resides.
. Ue expect it will not be meaningful to allou a PCO for an existing
phuysical file copy to have a null NAME. The format of this string,
its length and syntax, depend on the opsrating system of the storage
host. Only tha FP on that host need interpret the string.
{The same comment applies to DIRECTORY and PHYS).

C. DIRECTORY

I1f meaningful, this string names the file space directurg
in which the file resides.

D. PHYS

This item contains any further information required to locate
the file copy, including any structural or device-dependent information.

We have noted that only the storage host's FP need interpret
tha NAME, DIRECTORY and PHYS. A FP not in the same family as the
storage host will simply pass these items on without looking a
them =- indeed, this may be true even for family copy operations.
The FP at the storage host will use these strings to locate the
file copy (more precisely, it knous houw to map the “"canonical"
name formed from these strings into a name uwhich makes sense, and is
complete, for its operating sustem).

Therefore, for each family H in the NSW system, the content
of NAME, DIRECTORY and PHYS is left to the H-family File Package
|mplementnr5 This includes the decision whether any meaning
Hill be assigned to DIRECTORY and PHYS, and the mapping from the PCD's
"canonical” name into the H-family operating system structure.

{(r

FILE PACKAGE DESICN SPECIFICATION

Exaﬁpies:

le give examples of the four location items for files in the
TENEX and 05/3688 families. {These are nolt to be construed as final
or required mappings, but as examples onlyl. Our expectation and
hope is that the PCO is sufficiently flexible and complete to
allou similar mappings for any operating systea family which may
bz added to NSUW.

TENEX

File is MTAB: <BABBAGE=DIFF.ANALYZER;12 with password 'CHAS'
on storags host BBNB.

HOST = 49
DIRECTORY = ' BABBAGE"
NAME = 'OIFF.ANALYZERs12®
PHYS = "MTAB: "
(1f nesded the passuord uill be sent as a separate argument)
0S/3506

File is MSU.PDS.PROGRAHS (FILEPKG). 1t is uncatalogued,
but resides on a disk with serial number MNSWDSK, on UCLA-CCH.

HOST = 5
DIRECTORY = null
NANME = *HSL. POS. PROGEAMS (FILEPKG)®
PHYS = *UNIT=33389, VOL=SER=NSLIDSK'
1f the above file uwere catalogued, a possible variant uwouid
be:
DIRECTORY = *NSLU. PDS. PROCRAMS'
NAME = "FILEPKG'
PHYS = null

3. The Glabal File Descriptor

1t is possible to locate and access any physical file copy,
given its PCOD and, perhaps, directory passuord. He nou address the
problem of encoding and decoding the file for non-family transmissions.

Our starting point wau to conceptually divide the world into
tuwo groups —-- record-oriented machines and papsr-tape oriented
machines. Record machines see files as sequences of logically
grouped bytes, these "groups" being called records, Papsr tape
machines see files as streams of bytes mith no logical grouping
structure overlaid on the bytes. (The term "paper tape" does not refer
literally to the device only). [HMost of our attention has been
devoted to text rather than binary files, as the automatic

S

FILE PACKAGE DESIGN SPECIFICATION

translation of text files betueen hosts as required for wvarious NSW

tool accessss has been our most pressing problem. For text files, a
further characterization appears to be that record machines enjoy

file formats that are structurally rich, and paper tape machines

have files that are rich in format effectors {(see chapter..., Translation
Semantics)

We feel that it is possible to translate a given file from
machine to machina by preserving the notion that in each incarnation
of the file, it is formed of a logically equivalent sequence of
"lines" or "records", and therefore zl| physical copies
of 2 single NSU file are logically equivalent. It follouws that there
must exist a single characterization of thess multiple copies which
is global to the NSW system, i.&., which applies to each distinct
storage or tool bearing host familu where a physical copy may
appear. This characterization is associated with the host creating
the file in the first place.

This leads us to thz notion that every file in the NS
file system has what we call a Global File Tupe (GFT}, which is
specified at the point of origin of the file. This GFT characterizes
identical ly each physical copy of the file, whzther these copies
reside on @ host with the same operating system as the original
creator or not.

Let us give an exanple: consider a simple EBCOIC text file
genesrated by an editor on 05/36B. We assign this a GFT of *368-TKT®
(n.b. this is an exanple, and not necessarily a GFT in the NSW
system). Then ue imagine this file is transmitted to a TENEX,
via encodement into IL by the originating 368 and decoding from
IL by the receiving TEMNEX. The GFT of the neuw TENEX copy is still
*3EB-TXT', and is associated with the NSU catalog entry for the
file, rather than the PCO for the TENEX copy. (In fact, the copy
probably has exactly the physical characteristics of some file
format native to TENEX, e.g., '1BX-TXT' or '1BX-SOSTXT.’,
but its GFT remains '36B-TXT’ nonetheless).

The immutability of GFT across non-family host file transfers
is crucial, as it allows the NSW to base all such file transfers/trans-
lation on data stored centrally in the WM's data bass and passed to FP's
with initial procedure calls, rather than relying on FP's eventually
getting enough information from each other to allou file translation.
It also allous receiver FP's to immediately reject a file transfer
if no local equivalent of the GFT is knoun (or currently implemented).

To expand on this: for each operating system family H in NSU,
it is the responsibility of the H-family File Fackage implementors
to specify the GFT's for each file format in their operating system
uhich will be visible to NSW, and to generate the corresponding
Global File Type Table (GFTT} entries. Then the implementors of FP's
on other hosts must figure out their equivalent of these GFT's on
their operating systems. Each GFT with such an equivalent has a
{(potential) implementation of the cross-host file translation
encodement, ahd the rejection of any GFT without such an equivalent

C{

FILE PACKAGE DESICGN SPECIFICATION

is ‘aluways determined and well known. Thus, at any point in the
development of the NSW system, the set of possible cross-host
translations is well known, and depends on information in the NSU

data base rather than on information embedded in any phusical

file encodement, and unavailable until transmission has actually begun.

The infomation required by a FP willing to create a local
equivalent of a foreign GFT is in the Global File Descriptor (GFD),
which itself is a strightforuard encodement into NSUBS of the
appropriate GFTT entry. It is a list of six items:

CLASS linteger) Binary or Text

KEYS (integer) "No keys or keus

DIMENSION {integer) Overprint characteristic for text files

KEYDESCRIPTOR iintéﬁer} Number of digits in sequance number
(key) in IL

TABDESCRIPTOR (structure) Describes all horizontal and vertical

TAB's for text files

ILBYTESIZE (integer) Number of bits in byte in IL encodement
and netuwork transmission

These items correspond exactly to the items in the description
of the GFTT (See Appendix B). Ue reiterate that description here, uith
slightly different emphasis.

A. LCLASS

Currently, this item simply specifies uhether the file is
invariably text, or binary - in essence; non-text. Me may choose at
later date to further subdivide the class of binary files —- e.g., to

identify an NLS file.

At the current time, we are chiefly interestsd in the
distinction betueen text and non-text files, as ue expect most
cross—-family file transfers to involve text files. The only exception
knoun at present is the output of cross-compiler or cross-assembler
tools, and these are in the eclass of strictly binary files, requiring
only mapping from one operating system file structure to another. By
contrast, text files also require content mapping, e.g., of format
effectors.

The fill character for files compresssd by the IL encodement
is implied by CLASS. For text files, the fill character is the
blank; for binary files, the fill character is 7ERC.

(O

FILE PACKAGE DESIGN SPECIFICATION

The values for CLASS are:

1. Text
2. Binary

B.. KEYS

This item currently specifies uhether a file type has keus in
the DS/368 sense. A file type with keys allous (or requires) the
appearance of IL sequence numbers in its IL encodement. Treatment of
keys is particularly important for mapping files betueen paper
tape and unit record families.

VYalues for KEYS are:

1. HNo keys
2. Keys.

C. DIMENSION

This item extends the information supplied by {A) and (B},
partly overlapping. It applies particularly to text files formatted
for line printing, helping to identify the complexity of the
paper tape/unit record transformation. The values assigned to
DIMENSION are to be interpreted as follows:

1. Stream data, unkeysd, e.g., an ASCII text file on TENEX
uithout line sequence numbers. The basic paper tape
file format, but not necessarily text. '

s .
2. HRecord/line oriented file, e.g., TENEX S0S file or ordinary
blocked record file on 05/368. MNot necessarily a text file.

3. A text file containing non-overprinting format effectors,
particularly one formatted for a line print, e.g.,
containing form feeds.

4. A text file like {(3), but including overprinting format
effectors,-e.q., backspace. We anticipate using values
(2) and (4) specifically to identify line printer files.

D. KEYDESCRIPTOR

This item simply specifies the number of digits (characters)
in the IL sequence number for keuyed files.

E. TABDESCRIPTOR
This structure specifies all the tab-like format effectors

uhich may appear in the file. These are separated in horizontal
and vertical tab characters, uith the native operating system

l

——

FILE PACKAGE DESIGM SPECIFICATION

interpretation of each. HWe allou both regularly and irregularly spaced
tabs. !

F. ILBYTESIZE

Is simply the bute size used for cross-family transmission of
the IL encodement of this file type. The minizum value is 8.

Example: The GFO for a TENEX 505 (line-oriented, sequence-numbared)
file might be: 3

CLASS = 1
KEYS = 2
DIMENSION = 2
KEYDESCRIPTOR = 5
TABOESCRIPTOR = ((horizontal tab every 8th column)

(form feed is BB lines))
ILBYTESIZE = 8

4. The NSU File Catalogue

The File Package does not have direct access to the MSU File
Catalogue, which is ouned by the Works Hanager. All thes information
required by the FP arrives in its initial procadure call
argument list. From the FP's point of vieus, it needs PCD's and GFD’s
and is not concerned uith the WM's means of obtaining this information.

The File Catalogue Entry is specified in (Appendix A). The FP
receives PCO's and GFD's, never sees attributes, and is ignorant
aof the N5 File Name. Its main interaction with the File Catzlogus
is to confirm that a requested operation is complete so that the
WM may update its data base.

Houever, for the import and expart opsrations, FP implementors
are given some minimal additional information if they choose to implement
a local cross-reference directory for backup purposes. This is the
NSW file name string. With this, a FP can set up a cross-reference
directory uwhich identifies the phuysical copy in its NSU
file space uwith its Wi-assigned NSW file name. Creation of such a
directory is an implementor option. On TENEX, for example, the local
directory contains NSW file, TENEX file name, FP login directory, and
calling WM process address. It allous the NSU operator to restore user
files to the data base in the event of some data base failure.

-
(]

L

FILE PACKAGE DESICGN SPECIFICATION

IIl. File Package Functions
1. Introduction

There are six externalluy callable FP procedures. Four
are HM-callable procedures, and tuo are FP-callable. Four involve file
motion {copu) operations; one is a delete (file space maintenance)
operation; and the last requests information (file analysis).
There is also a single internal proccedure which implements the
receiver side of cross-netuwork file copuing. The seven
procedures are: -

A. Copy Operations
1. HH-callable
a. Import a file into NSU filespace (FP-IHP)
b. Export a file out of NSU filespace (FP-EXP)
c. Transport a file betusen non-NSH filespaces (FP-TRANSP)

2. FP internal procedure:
a. Receive a file from the network (METRECEIVE)
3. FP-callable

a. Send wme a file (FP-SENOME)

B. Delete Operation
1. UWH-callable

a. Delete your physical copies of a file (FP-DEL)

C. Analyze Operation
1. FP-callable

a. Analyze a physical file copy (FP-ANAL)

FP-IMP is used by the UM to implement the user MET IMPORT
and COPY commands, and the internal DELIVER procedure. FP-EXP is
used to implement the user NET EXPORT command, and the internal
OPEN procedure. FP-TRANSP implements the user NET TRANSPORT command.
FP-SENDME is the procedure used to set up netuork file copy betueen
two FP's. FP-ANAL is currently unused, but provided if some kind
of file analysis becomss necessary.

i

b3

FILE PACKAGE DESIGH SPECIFICATION

In this chapter, ue will specify each function in terms

of the choices uwhich must be made and the actions which must be taken.
The next chapier esxactly specifies the callin: sequences for each
function, including the NSUB3 encodement of all arguments. That
chapter also describes the outer-level communications of the FP,

i.e.. the M5G-level dialogues. Another chapter sketches the

LUM-FP interactions, including the algorithms involved in making

FP procedure calls within the LM.

2. Copy operations.

A. HWn-callable procedures

At 2 low level, FP-IMP, FP-E¥P and FP-TRANS involve use of an
identical file copy facility, and it might havs been possible to
replace the three with a single FP-COPY procedure. We have chosen to
specify these three separate functions because each has guite
different arguments, choice patterns, and dissimilar
communications patterns (for which see chapter ---]

FP-IHP is used to incorporate a file into the NSU file
system. External files may be taken from a tool’s workspace
(DELIVER), or from an external file space or 1/0 station as
specified by the user (NSU EXEC: NET IMPORT command). In addition,
the NSW EXEC: COPY command is treated as an importation, although
the source file is already in NSWU file space. FP-INP is characterized
buy:

. Unigque source file physical copy

Destination filespace (NSU) maintained by FP
FPossible maintenance of cross-reference directory
Usuzlly a local operation without file translation,
NSW file aluays having same GFT as source file.

ae0ow

FP-EXP is used to create a phusical copy of an NSW file in an
external filespace. This is frequently due to 2 tool’s need for
some specific access requiremsnt, requiring an appropriately translated
physical copy (OPEN)}. FP-EXP also implements the NSW EXEC: NET EXPORT
command. FP-EXP is characterized by:

a. Choice bstusen multiple physical copies of
NS source file

b. Possible forced translation of file to satisfy
tool's needs, as source and destination may have
= different GFT'S.

FP=TRANSP implements the NSU EXEC: NET TRANSPORT command.
It is the simplest of the copy operations, characterized by:

U5

FILE PACKAGE DESIGN SPECIFICATION

a. No choices in source, destination, or possible
translations

b. Does not involve NSW file space

The three copy operations above have one important shared
characteristic: the procedure calls aluays go to a FP on the

host where the neu physical copy is to reside -- i.e., to the
receiver host. Thus, a FP receiving one of these procedure
calls will aluays be seeking to create a new file in the file

space of the local host, uhether this is NSU filespace or not.
Indeed, FP-IMP must assume that local NSW filespace is involved.
It is an error for FP-EXP or FP-TRANSP to receive a destination
specified foreign to the local host.

File motion in copy operations is divided into three classes:

1. Local caﬁg. Source and destination filespaces are on
local host. This operation involves use of the local
operating system procedures only. Since this is host
dependent, the local copy operation has no specification
‘in this documant.

2. Family copy. Source and destination filespaces are on
hosts using the same operating system. File transfer
requires use of NMETRECEIVE/FP-SENDHE, but does not require
l1IL encodement of the source file. The transmission
protocol is private, determined by the FP implementor
for each host family rather than being specified in
this document.

3. Non-Family. Source and destination filespaces are on hosts
not sharing the same operating systems. File transfer
requires use of NETRECEIYE/FP-SENDME as above, and also
requires the IL encodement and inter-family transmission
protocol specified here.

B. FP Internal Procedure

NETRECEIVE implemsnts the receiver side of netuwork file copy
for both family and non-family file transfers. [t is the issuzr of
FP-SENDME calls to remote FP's. It is the procedure responsible for
decoding IL files into the local file formats.

C. FP-callable procedure

FP-SENDME is the function required by FP-INMP, FP-EXP and
FP-TRANSP to request transfer of a source file residing on a foreign
donor host. The calling sequence is identical whether or not the
donor is in the receiver’s family or not. The procedure involves

=

(~

‘FILE PACKAGE DESIGM SPECIFICATION

a dialogue betueen tuo FP's, one on each host, and is one of only
tuwo Instances of an NSW component which talks to 2n instance of
itself (the other baing UWH's in a distributed datz base systeml.

The operation is driven by the receivar FP, i.e., the NETRECEIVE
process. The FP-S5ENDME call specifies the source file and netuork
transmission paramcters. The donor FP's only responsibilities are to locate
the file, correctly encode it into IL if necessary, and transmit it. The
receiver FP has the responsibility for correctly translating the
file for the desired access. FP-SEMONME is chasracterized buy:

a. FP-FP dialogue
h. Only operation dirEFtlg using netuork connections
c. File translation intofout of IL

3. Delete opeation (Wi-callable)

The FP-DEL procedure deletes a list of physical file
copies on a single host. Maintenance of the file catalogue is done
by the WM, and the FP's only procedure is to delete each specified
file copy. These need not, in fact, be copies of the same NSW file.
FP-DEL characteristics are:

a. All PCD's are on local host

4. Analyze Operation (FP-callablel

The FP-ANAL procedure is currently unspecified, but included
as a hook in case a future n=zed for such a function arises. The
information gathered by the ANALYZE function specified in the
breliminary spacification is nou available in the GFD and FP-SENDME
calling sequence (g.v.).

UE now proceed to a more detailed specification of each function.

5. FP-IHP furction
The arguments to the FP-INP procedure are:

a. PCO, password, GFT and GFD of source file
b. NSW file name string
c. Flag to indicate deletion of source file

The results of FP-INP are:

a. PCD of neu file copy in NSW filespace

The FP-IMP procedure call aluways goes to a FP on the
host uhere the UM wants to create the file copy. HNote that the
NSU-contrelled file space into which the neu file will go is not a
FP-IMP argument. The receiver FP will select a file space, relieving

LY

FILE PACKAGE DESICN SPECIFICATION

the UM of the burden of maintaining filespace(s) on each storage

host. This implies the existence in gach FP of a "File Space Data Base"
thich describes the local NSW file space. The design of this data

base is left to the implementors of each host family FP.

A File Package receiving a FP-IMP procedure call performs
the following operations: (Message handling, argument translation
and checking, etc., is aluays assumed).

a. Locate and access some NSU file space for the new file copy.

b. Generate a unigque local file name for the neu copy.
This and the file space description are entered into
a neu (result) PCD,”

c. Locate and access the source file. This will usually be
in some file space on the local host.

d. Copy the source file into NSU file space. If the
file is on a foreign host, this requires a FP-SENOME
call to a FP on that host.

e. (Option). Create a cross-reference directory entry
for the neu file using argument (b) and the
information In the new file PCO.

f. Delete the source file, if requested by argument f{c).
Confirm to the WM the source file deletion (if requested)
and creation of local cross-reference directory entry.

g. This will often be set for files being delivered by a tool.

h. Confirm to the WM the source file deletion (if requested)
and creation of local cross-reference directory entry.

BE. FP-EXP function
The arguments to the FP-EXP function are:

a. A list of PCO's of the NSW file to be exported

b. GFT and GFD of tha N5UW file

c. PCO of result file in non-NSW file space, and filespace
password :

d. List of desired GFT's for result file

e. Flag indicating wuhether to preserve @ copy of the file

v+ in NSW file space, and the NSW file identifier string.

The results of FP-EXP are:
a, Completed PCO for result file

b. PCD for NSU copy, if created
c. OFT of result file.

ALy

(!

«

LI S|

FP-EXp is a More compley function than FP-]
Provide g Qoo motivation for & mygre Complete djgey
He noay discuss the arguments, v
that must be made betysen tham,

Copy Opberation,

call goes tq a Fp
Createad: thus, the resul|

the locag host, ang the GFT 5 ;
i the loeg) host aqyg knoun by tha o]

the N5U file, ang Must chogg

Cperation. This

thus may vary betuson implement

fami|

U if one Eexist

Hils Al 8 copy on g for

inl,

ive lse any other copy

Recal | first that

0N the host there {he new extorna
t file pop MuUst specify g

n the desired result

€ Onz PP ¢ the source

ocal host if jt exis

2r host jn the same

eign host vhich js 5

independ 0F the source of the Physical fjle copy
only on the GFT of the NSW file

The resu|t file PCp M3y be incomplete. i
call is the result gof 5 Foreman Fequest to gpgy af

P. The filespae

FP-Exp is
choice gf Source
transfatfng betye
of desjreq resul t
the FP-Exp call r
and Possibly more
call. (Ang the |

hore Comp | ex
Copy, but a|sp
8N Source and

than FP-1pp not onjy
because gf the poss
result GFT*s,

GFT’ s, there uj bz one entry in

esults from an

NSH Exec: net EXPORT

he, ang wil|
Ssion pf the filp
the choices
the FP-Exp Procedure
I file jg to be
file Space on
list must
cal Fp,

for the copy
of nffi:iencg. and
host families,
ENEX Fp) is

ts

Iready encoded

because of the
ibility gf

Argument (g) isaligt

this |jst if
Command,

than one jf the FP-Exp results from an OPEN
mpty, in Lhich case FP-Exp defaul ts

ist might ke ¢

to the Source (NSL)) GFT). The

GFT first, The 3

2. HResy|

#

lgori thm for choosing

listed js sorted wjth the most desired

the result jg:

from source GFT 1o any desireq resy| ¢
GFT. is known, FP-EXP faij s, Most translatons Hill
i ifforent hosts: ©-9-, from 18X-TxT to 368-TXT

be betueen

to IHH~NACEBKEL; in these Cases, tha transiation
i to the translarinn Problen betueen hosts

the trans]ation reduces tg

(G

LUT L T, e gy u—..n-—__-_..--—-—.-__. Ty o)

FILE PACKAGE DESIGN SPECIFICATION

knowing whether or not some foreign GFT is knoun to the non-family

copy routine embeddsd in FP-SENDME. Some cases may invelve translations
betuzen types native to single host families, e.g., betusen

1B8-505TXT (sequenced 50S file) to 18X-TXT (unsequenced ASCII file).

Each such case is identified and defined by the implementors of each
family FP.

The reason that the result GFT is the one for which tranmslation
is easiest, rather than the most desirable, is to allou tools able
to do their oun translation to do so, ulthout burdening the FP.
Thus, the TEMEX 505 editor might have a desired GFT list of
(1BX-S0STKT, 1BX-TXT), and ths FP uould choose 1BK-TXT if its source
is also 1BXK-TXT, although the translation betuween the tuo is knoun.

Note that the GFT translation problem does not affect the
choice of source physical copy. Each such copy of the NSU fiie has
the same GFT and the same possibility of translation to the result
GFT 23 any other. The choice of source copy has a significant
effect on the efficiency and ease of the copy/translation operation,
but no effect on its achievability.

Finally, FP-EXP may bs requested to leave a copy of the file
in local NSY filespace. This request uill be ignored if a source
copy in local file space already exists. The neu physical copy will
be in one of tuo forms:

a. If source GFT is native to the local operating sustem,
file copy will be in that form
b. Otheruise, neu physical copy will be in IL

The neu copy is entered in the local eross-reference directoruy,
exactly as done by FP-INMP. Houwsver, since source file deletion is not
an option uith FP-EXP, no confirmation is required {(see section 1Y-3,
Wi/FP interactions).

After argument decoding, the FP-EXF function performs the
fol louwing operations:

a. Choose the source phuysical copy of the NSW file.

b. Choose the result GFT of the result file

c. Copy the source file into the specified external file
space. Simultaneously create a copy in NSY file space
if requested.

d. I1f an NSU copy was created, enter it in the local
cross-reference directory.

e. Return results to caller WM.

7. FP=TRANSP function

L

FILE PACKAGE DESIGN SPECIFICATION

' The arguments to the FP-TRANSP function are:

2. Source file PCD, passuord, GET and GFD
b. Destination file PCD, password, GFT and GFD

FP-THANSP has no results {except the standard NSUTP error
descriptor).

FP=-TRANSP ies exactly FP-EXP with no choices as to source
phusical ecopy or result GFT, and no option to create an NSW filespace
copy. If the translation from source to destination GFT is knoun,
the copy operation is performed; otherwise, FP-TRANSP fails. So
the operations carried out by FP-TRANSP are simply:

a. If possible, copy the source file into the destination
file space

8. The NETRECEIVE function
The argumEnts-tc the METRECEIVE function are:

a. Source file PCO, password, GFT and GFD
b. Primary result (destination) file PCO, password and GFT
c. Secondary result file PCO and passuord

The NMETRECEIYE function implements the receiver side of all
netuork transfer operations. It is responsible for translating
from IL to the native result GFT, and implements the creation of
the two local copies which may be required by FP-EXF. Since this
is an internal FP procedure, uwe only require that the functionality
of this procedure be supplied, and not that it be an actual procedure
in any given FP implementation.

The source file must be on a foreign host, and both primary
and secondary result filesphaces must be on the local host. The
primary result file is the usual result of the netuork copy operation;
it is NETRECEIVE'S responsibility to translate the file received
from the foreign host into the specified result GFT which must be a
native tupe, and thus METRECEIVE implements both the decoding of
IL files and any translations betueen native GFT's. The secondary
result file is created only when FP-EXP is asked to create a file
copy in NSW file space: in this ecase, the copuy’s GFT is the source
GFT, and the file will be in the local format corresponding to the
GFT if it is a8 native tupe, or in IL if the file was received in IL.

METRECEIVE does a FP-SENDME to a FP on the donor host in
order to initiate the transfer. 1t transmits the source file
information as received, uithout attempting to check it, using only
the host address from the FCO. MNETRECEIVE also chooses the
maximum transmission byte and record sizes which it will accept. The
bute size nill generally depznd on the operating system for
intra-family transfers, and be the IL bytesize from the source GFD for

20

FILE PACKAGE DESICH SPECIFICATION

i
inter—family transfers. The transmission record size depends on local
operating system constraints.

The response to the FP-SENOME specifies the actual transmission
byte and record sizes, a connection identifier, and estimated file size.
If .required, NETRECEIVE uses the estimated file size to allocate
local storage space for the result filels). It then opens a
direct binary receive connection to the donor host uith the M50
OPENCONN primitive, using the connection identifier and byte size
received from the FP-SENOME call. 1t then receives the source file
over the connection, and closes the connection after receiving
an end-of-transmission signal over it.

Either simultansously with receiving the file, or after
transmission is complete, NETRECEIVE creates the result file(s)
requested. If it is creating a secondary result file in IL, it
concatenates the.transmission records and removes the transmission record
syntactic tokens and byte counts, producing @ pure IL encodement.

The operations performed by NETRECEIVE are:

a. Choose acceptable byte and record sizes

b. Execute FP-SENDNME to donor FP

c. PReceive FP-SENDNE response, and open direct receive
connection using supplied parameters

d. Receive the file, and create the result filel(s)

e. Close the direct connection

9. FP-SENDME fumction
The arguments te the FP-SENDME function are:

a. Source file PCD, password, GFT and GFD

b. Receiver host address

c. Maximum transfer bute size and record size
d. Private intra-family information

The results of FP-SENDME are:

a. Connection identifier
b. transfer bute size and record size
c. File size (in bits)

The FP-SENOME function implements the donor side of all
network transfer operations. The procedure call is identical for
both famiJdy and non-family transfers. 1t is responsible for
establishing the parameters of the network transfer, and for
encoding sources files into IL for non-family. transmissions.

The source file PCD must describe a file in the local file

space. If the file must be encoded into IL, it is FP-SENDME's
responsibility to correctly encode it according to the GFT/GFD.

e

(

‘FILE PACKAGE D=SIGHN SPECIFICATION

Since the GFT will be a native type if translation is required,
the GFD will not be requircd. The GFD will b2 reguired,

houwever, if the source copy is already in IL; for in that case

the FF must parse the IL in order to correctlu brezx the file into
transmission records.

The receiver host i.d. (MS5C network adireess) is provided
so that the FP can find out whether the transfer is family or non-family.
It is also available from the parameter block provided for the MSG
receive generic call that initiated the FP-S5ENIME, but is included
as an argument for convenience.

The receiver FP specifies the maximum netuork transmission
byte size it is willing to accept, and the maximum number of bytes
it can accept in one transmission {(record sizel. The donor FP
hand! ing the FP-SENDME then chooses a byte and (maximum) record
size, and returns this to the receiver. HWe expect that the bute size
will usually be identical to that in the GFO, but we allow FP's
to choose a larger byte size if this is a convanience.
One network transmission byte always contains one right-adjusted IL
bute in non-family transmission mode. The contents of a buyte in family
transmission mode are defined by the implementors of the FP for each
family.

Argument {d) is also defined by the implementors of the FP
for each given family, and may contain an arbitrary amount of
information. It must be ewmpty for non-family transfer.

Besides ths byte and record sizes, ths FP-SEKDME function
returns a connection identifier and estimated file size. The connection
identifier is the argument required by the NMSG OPEMCONN primitive, .
allowing the donor and receiver to open the direct network connection
for the file transfer. The file size is in bits, and is provided
for FP's uhich must allocate disk space; it is considered an estimate
of size only.

After sending its results to the calling receiver FP, the
FP-SENDME procedure opens a direct network connection to, the
receiver FP via the MSG OPENCOMM primitive, using the connection
identifier and size it specified in its response. Once the
connection is open, the file is transmitted over it to the receiver.
The transmission protocol will be the inter-fanily protocol
described in chapter [(---), or the private intra-family protocol
created by each implementor.

In either case, the end-of-transmission signal is transmitted
over the direct connection with the file data. {The end-of-transmission
mark is part of the inter-family protocol. Ezch intra-family protocol must
use an analagous technique). Once the end-of-transmission signal is sent,
the FP SENDME procedure closes its end of the direct connection using the
CLOSECONN primitive.

FILE PACKAGE DESIGN SPECIFICATION

The FP-SENOME procedure is responsible for all encodement of
files into Il., and for blocking IL encodements into transmission
records for the direct connection. MNote that the IL syntax forbids
regquires that IL records not be broken when the IL encodement is
blocked for transmission.

The operations performed by FP-SENOME are:

a. Confirm existence and accessibility of source file,
and lock it

b. Choose actual transmission byte and record sizes, and MNSG
connaction identifier

c. Send response to rec2|v?r FP. [End of action if error
resnonse)

d. Open the direct binary send connaction

e. Transmit the file using the appropriate protocol

f. Close the direct connection.

18. The FP-DEL function
The arguments to the FP-DEL procedure are:
a. A list of PCD's of files to be deleted
The results of FP-DEL are:
a. A list of error descriptors

FP-OFL only supports the deletion of phusical copies of
NSW files. Thus the list of PCO's does not include passuords,
as it is presumed the FP has acess to NSW filespace.

Each PCO in the argument list must specify a file in local
NSW filespace. These need not be copies of only one NSU file, and
the Works Manager is free to request the daletion of physical copies
of many NSW files in one FP-DEL call.

FP-DEL invokes the usual local operating system procedures
for file dezletion, removing names from catalogs or directories.
Updating the local cross-reference directory is each implementor’s
choice.

The result list uill be empty (length B) for successful
deletion of all files. 1f any error occurs in attempting to delete any
file copy, a result list is created with the same length as the argument
ltBt. and an error descriptor analogous to the NSUTP error descriptor
is placed in the entry ccorresponding to the argument PCD which
gave the error. FP-DEL then attempts to delete the remaining
PCO's -- one error does not.terminate FP-DEL.

Pl

FILE PACKAGE DESICM SPECIFICATION

The operations of FP-DEL are simply:

a. Delete the file specified by each ergument PCD

11, The FP-ANAL function

This function is currently unspecified. Possible need for it
arises if:

a. A GFT exists for which information about a particular
PCO cannot be saved in the WM data base -- e.g., number
of records ?

b. Ue implement a user function which returns file size
{e.g., number of characters in listing file)

((

SRSl

FILE PACKAGE DESIGM SPECIFICATION
IV. File Package Interfaces via MSG

1. Introduction

This section of the description of FP functions focuses
on thes patterns of communication betuszen a File Package component
and the Horks Manager or another File Package. In particular, ue are
interested in the kinds of messages received and sent by a FP using
MSG. There are tuwo subsections of this section: the first
describes the kind of primitives invoked in MNSG for each external
FP procedure; the second describes the exact calling sequences and
results of each procedure.

2. HM5SG Message Primitive interactions

Every FP procedure is initiated by the receipt of a message
from M5G, and each at least sends a result message to the caller
via M5G. A given FP instance handles at most one procedure call at
a time, and the operations to implemsnt this procedure are largeluy
bounded by the receipt of the procedure call and the sending of the
resul t.

Every message received or sent by the FP is encoded in
NSLB3, and has the NSUTP format. In this section, we specify
each message by showing the contents of ths NSUTP header. ({(See
latest NSUB8/NSWIP specification). This dascriptor is:

(type, transaction-identifier, parameter, argument-list)

type will be 1 for a procedure call and 2 for a reply

transaction-identifier will aluays have a unique non-zero
value created by the caller

The exaction specification of argument-list is the subject
of subsection 3 belou

We nou summarize the communications for each externally
callable FP procedure.

A. FP=INP

FP-IMP is invoked by a procedure call sent to any FP instance
on the destination storage host:

i. WM to FP: SendGenericHessage(l, tid, "FP-INP", args)

The FP-INP procedure responds to the caller with a specific
result message:
f

G

*FILE PACKACE DESIGH SPECIFICATION

ii. FFP to call Wi: SendSpecificHessage (2, tid,error-descriptor,resul ts)

FP-INMP then receives a confirming message from the WH: only
then does FP-INMP complete its action (deletion of source and entry in
local cross-reference directoryl
iii. Caller W1 to FP: SendSpecifictlessage(l, tid,confirmation,L1ST(8))

confirmation: CHARSTE: “FP-1MHPOK"

success
"FP-1MPBAD" failure.
FP-1HP then re-confirms its final actions:
iv. FP to caller WM; SendSpecificlessage(Z,tid, error-deseriptor,
LIST(B)) .
B. FP-EXP

FP-EXP is invoked by a procedure call sent to any FP on the
destination storage host:

i. WM to FP: SendGenericltiessagel(l, tid,"FP-EXP", args)
FP-EXP then responds to the specific WM instance that called it:

ii. FP to caller WM: SendSpecificlessage(2,tid,error-descriptor,resul ts)

C. FP-THANSP

FP-TRANSP is invoked by a procedure call sent to any FP
on the destination storage host:

i. HH to FP: SendGenericllessagell, tid, "FP-TRANSP", args)
As above, FP-TRANSP responds to the caller HM;

ii. FP to caller HWM: SendSpecificMessagel2,tid,error-dascriptor,results)

D. FP-SENDIME

FP-SENOME is invoked by a procedure call from the FP instance

desiring a file copy to any FP on the host where the source file is
stored:

i. FP to FP: SendGenericHessagell, tid,"FP-SENOME", args)

-

FP-SENOME replys to the specific caller FP instance:

FP to caller FP: SendSpecificlessage(2, tid,error-descriptor,results)

16

FILE PACKAGE DESIGN SPECIFICATION

FP-SENDOME then opens a direct connection, transfers the file,
and. closes the connection.

E.c FP-BEL

FP-DEL is invoked by a procedure call to any FP on the host
from wuhich the MSU physical file copies are to be deleted:

i. LM to FP: SendGenericlessage(l, tid,"FP-DEL", args)

And FP-DEL'e response to the calling WM instance is:

ii. FP to caller W SendSpecificMessage(2,tid,error-descriptor,resul ts)

F. FP-ANAL

Not specified at this time.

Error recovery at the M5G interface level is specified in (---).

L

ILE PACKAGE DESIGH SPECIFICATION

3. ' External procedure calling sequences -- arguments & results.

The follouing subsection spacifies the argunent lists
and result lists for each procedure call mentioned in (2} above.
Freguently Used Arguments

W5WUBE is assumed as the formatl of all messages containing
File Package arguments.

Mote on empty arguments:

Lhenever an argument is empty, the follouwing will be
used rather than the NSUZE EMPTY data type:

INDEX ; INDEY with value B
CHARSTR " CHARSTR with length B
LIST - LIST wmith length 8

LIST{n)} and CHARSTR(n) mean a LIST or CHARSTR of length n.

1. Physical-copy-descriptor {pcdl:

LIST { host: THOEX,
directory: CHARSTR,
name: CHARSTR,
phys: CHARSTR,
ilflag: BOOLEAN }

Z. DGlobal-file-descriptor {(gfd):

LIST (class: INDEX,
keys: INDEX,
dimension: INDEX,
key-descriptor: INOEX,
tab-descriptor: LIST,
il-bytesize INDEX)

class: INDEXK

value = 1 for text

{Implies fill character is blank)
value = 2 for binary
- (implies fill character is zero)
keys: IMNDEX
value = 1 for no keys
value = 2 for keys

LY

FILE PACKAGE DESICM SPECIFICATIOM

Z.a. tab-descriptaor

LIST { horizontal-tab-descriptor: LIST { tah-char: CHARSTRI(1)
stop-specifier: 1NDEXI
LIST {IMDEX)}

vertical-tab-descriptor: LIST { tab-char: CHARSTR({1)
stap-specifier: INDEXI]
LIST (INDEX ...)}

A given descriptor is interpreted as a2 stop-increment
if it contains a single stop-specifier, as a stop-position list
if it contains a LIST (even if the list contains but ones element)

3. Result-descriptor

File Packzge results are returnzd in the standard
MSWTP header as specified in the NSUEE and NSWTP speccification.
{Except see the description of the results of ths dalete operation)

4. File-identifier: CHARSTR (fid)

A string formed by the WM, the <file-identifier> as
specified in the description of the NSW file name syntax.
This is an interim argument, and is used by the FP to create a

local file directory containing this identifier and the local file
system name of each file imported into the NSW file system.

5. Global-file-typs: CHARSTR (gt)

The string which identifies global file tups, and is used
by the LM as access key to the global file type table.

E. Passuord: CHARSTR (psud]}

Local file space (directory) passuord.

=+ ILE PACKAGE DESIGN SPECIFICATION

File Package calling sequences:

——

1. HM czall on FP to import a file into the M3 file sustem:
FP-1HP [cxl-pﬂd.Extmpsuﬂ,ﬂxt—gt,ext—g?d.f}a.qdcll
+ neuw-int-pcd -
gdel: BOOL
is TRUE iff the file described by exi-pcd,
etc, is to be deleted in cuniungtiun Hith the importation
2. WM eall on FP to export a file out of MNSW file space:

FP-EXP (LIST(int-ped), int-gt, int-gfd,
ext-pcd, ext-psud,LI5T {desired-ext-gt) , gkeep, fid)

“ neu-ext-pcd, neu-int-ped, ned-ext-gt
LIST (desired-ext-gt)
The first global file tupe in the list is preferred,
mith any others being acceptable. [f the list has length zero, the
(,“ neu-ext-gt (result) is defaulted to int-gt.

3. UWH call on FP to transport a2 file betusen external file spaces:

FP-TRANSP (sre-ped, sre-psud, src-gt, sre-gfd,
dst-ped, dst-psud, dst-gt, dst-gfd)

- {no results, i.e. LIST(B)]

&. WM call on FP to delete the physical copies of an NSU file.
FP-DEL(LIST(int-pcd)l) « LIST(rd)
The result list has the following interpretations:

If all the specified physical copies are successful ly
deleted, then the result will bhe LIST(8).

Otherwise, it will be a list with the same number
of entries as the input list. For each input ped, the corresponding
item in the result list will be LIST{8) if the pcd’'s file was
successful ly deleted, and a three element list for each failure:

20

FILE PACKAGE DESIGM SPECIFICATION

LIST(errclass, errnumber, errstring)
This is similar to the error descriptor in the NSUTP header.
5. Receiver FP call on donor FP to send a file over the netuori:

FP-SENOME (sre-pecd, src-psud, sre=gt, sre-gfd, receiver-host-id,
max-byte-size, max-record-size, family-infol

- connection-identifier, transfer-byts
size, transfer-recard-size, file-hit-size

2

FILE PACKAGE DESIGN SFECIFICATION

receiver-host=-id: INDEX

netuork (MSG) address of receiver host
max-byte-size: THOEX

maximum byle size acceptable to receiver
max-record-size: INOEX

maximum number of buytes (as above) which receiver
can buffer in ons transmission

connection—identifier: ITNDEX

connection identifier to be used in MSG OPENCONN call

transfer—bgte—siée: " INDEX

bute size donor will actually use in transmission
transfer-record-size: INDEX

max imum number of bytes donor will send in one transmission
file-bit-size: INTEGER

donor's estimate of file size, in bits.

fami ly-info: HPTY for normal cross-family protocol,

i.e., transmission of |l.L.
non-EMPTY for private family protocol,

chosen by each File Package implementor. May
be non=-EMPTY only for family copy operation.

e

FILE PACKAGE DESIGN SPECIFICATION .

Chapter 3:
File Packags Structure
1. Introduction

This chapter suggests an organization for the File Package,
i.e., the modules uhich implement the functions described in this
specification. This chapter is meant as a guide to implementors,
and does not ordain a mandatory organization of the File Package.

We begin by giving @ graphic representation of the File Package,
then deseribe athe modules shoun. These may then be further
refined. A

2. Top-Level FP. structure

A. FLPKG (Top Levazl Control) ;FLPKG is thes NMSG generic namez
B. Initializer
C. Procedure Call Handler
0. Dispatcher
E. FP-1MP Processor
FP-EXF Processor
. FP-TRANSP Processor
FP-SENOME Processor
FP-DFL Processor
. FP-ANAL Processor
K. HNETRECEIVE Processor
L. H5G Utilities
M. Local File Sustem Utilities
N. NSUTP/NSWBS Utilities
0. FP data base Utilities

*

L—TT0T

2.A. FLPKG

The File Package main routine simply calls the Initializer,
Procedure Call Handler, and Dispatcher serially. Oepending on
its host's MSG, it then either cycles or executes a Stopile
primitive.
2.B. Initializer

Any initialization is done by this routine. It must reset
the FP data base if the FP eycles rather than stopping. It is
responsible for issuing a WhoAml to identify the local host.

2.C. Procedure Call Handler

22

TILE PACKAGE DESIGH SPECIFICATION

This module uvses the MSG utilities to issue the
— Receivelenericlessage which contains the File Package procedure call
to be processed, and decodes the message into the FP data base.

2.0. Dispatcher

The Dispatcher passes the procedurs m-gument list to the
appropriate function processor.

2.E. FP-IMP Processor
The structure of this processor is:

ki i. FP=IMP control
: : ii. Read Arguments
iii. Locate source host
iv. Dispatch on copy tupe
v. Local copy
vi. Family copy
vi. WNon-Family copy
vii. Send results of FP-1NP
wiii. Receive Ul confirmation
i%x. Enter in cross-reference directory & delete source
®. Send Wil final confirmation

2.F. FP-EXP Processor
The structure of this processor is:

i. FP-EXP control

ii. Read arguments

iii. Choose source cony

iv. Set up local (result) PCO(s)

v. Dispatch on copy types
vi. Local copy

Family copy
Non-Family eopy

1.
viii.
¥. Send results to Wi

.
]
.
I
I

2.G. FP-TRANSP Processor
The structure of this processor is:

- i. FP-TRANSP control
ii. Read arguments
jii. Locate source host |
ive. Dispatch on copy typ=z
v i v. Local copy
({ _ vi. Family copu

FILC FPARALD UEolbIN oFELIF LA LU

vii. MNon-Family copy
vii. Send results to N

2.H. FP-SENOMZ Processor
The structure of this processor is

i. FP-5EMDME control
ii. Read arguments
iii. Locate & lock source (locall file
iv. Send results message
v. DOpsn data connection
vi. Dispatch on transmission protocol
vii. Family transmission protocal
viii. Non-Family transmission protocol
ix. IL encoder
#. Close connection
xi. Helease local file

2.1. FP-DE Processor
The structure of this processor is:

i. FP-DEL control
ii. Read argumsnts
iii. Loop & delete files
iv. Send results to UH

2.J. FP-ANAL Processor {unspecified)

2.K. METRECEIYE processor
The structure of this processor is:

.i. METRECEIYE control
ii. DOpen local (result) filels)
iii. Issus "FP-S5ENDHME' to source host
iv. Receive results
v. [Open data connection
vi. Dispatch on transmission protocol
vii. Family transmission protocol
viii. MNon-family tranmission protocol
ix. IL decoder
#. Close connection
T »xi. Complete local filels)

&

(

JFILE PACKAGE DESICH SPCCIFICATION

2.1,

2.M.

EINi

2.0.

MSG Utilities

These include:

a. Execute primitive - at lease SendGznzricilessage,
ReceiveGenericllessage, SendSpecificHessage,
Receive Specificlessage, OpenConn, Clos=Zonn,
Uhohml, Stopme

b. Build Parameter Blocks

c. Create/fiezd Process name

Local File SHséem Utilities
These Et_lea?t include:
a. Verify legality of PCO
b. Connect to directory
c. Dpen/close File
d. Catzalog/enter a file in directory
e. Delete a file
f. Read/urite a file
¢g. Read/urite file catalog parameters
h. Create unigue file namne

i. Heceive/Send data over direct connsction

NSWTP/NSWBS Utilities
These utilities are responsible for at least:
a. Uriting from NSWBE to internal data basz fornm
b. HWriting from internal data base form to NSHUB&

c. HReading/uriting NSWTP headers

FP 'data base utilities

NSW component implementors typically use an internal data

base for each component to insulate themselves from changes and
inconveniences in the NSWBE encodement. These utilities
create/maintain the internal data structures which are analogs

26

FILE PACKAGE DESIGN SPECIFICATION

to the NSUB8 forms.

LA

(

‘FILE PACKAGE DESICM SPECIFICATION

Chapter &4:
An Intermediate Language for File Transfer
1. Introduction

This document describes the gramma= used to encods NSU
file contents for transfer of binary and text files betwzen NSW
TBH's of differing families. The donor FP encedes the file
according to the grammar and the file's global file type, and the
receiver FP parses the resulting intermediate data and recreates the
file as close 1o its original form as possible,

The complete grammar foi file transfer consists of the
global file tuype, corresponding global file type table (GFTT)
entry, and Intermediate Language (IL) grammar described here.

There are three main requirements for this cemplete grammar:

first, it should be possible to encods files uith a minimal

loss of structural information: second, it should capture the
structural information of the file system of any TBH {and be
extendable to new types of TBH as they are brought into

M5W) s third, it must support a physical transmission protocol
compatible with the netuork 1/0 suystem of each TBH family. The
fulfillment of the first requiremnent depends on fulfilling the
second. The third requiremant could be fulfilled by a2 transmission
protocol independent of the encodement, but there are some
practical advantages to including this in the IL, and we have chosen
to do so.

lle have not yet attempted to capture all the complexity of,
say, the US/3BB file system, although the complete grammar is quite
rich and easily expanded. The encodement of structural information
and data is completely separated, both the ease future expansion and
provide more conceptual clarity. All structural information,
including byte size, sequence number and format effector descriptors,
text/binary, etc., is contained in the GFTT - global file type.
The [.L. grammar describes data encodement for the file, and
includes productions uhich specify the netuork transmission protocol.

In moving text files from paper type-oriented machines
to unit record-oriented machines ue must inevitably deal
Hith the problem of ASCII format effectors. Part of the function
of the global file type table is provide a "dictionary"” defining
the vertical format effectors and horizontal tab spacing for each
global file type (text) in the NSW file catalog. The receiver
FP consults this entry on encountering a format effector during
the parsing of an encoded file, and tasks the action most appropriate
to its operating sustem and/or the tonl which will use the file.
For example, horizontal tabs may be expandsd into blanks, vertical
tabs into blank lines or blank lines with ASA format effectors
as first characters, etc. Similarly on transaission from a unit
record TBH to a paper tape TBH, leading blanks may be collepsed
by the receiver FP into horizontal tabs, etc. The grammar makes
no assumptiont and imposes no restrictions on hou the receiver

3%

FILE PACKAGE DESICN SPECIFICATION

FP will store the parsed file; its purpose is to specify as
completely as possible hou the sending FP stores the file.

The problem of moving text files with ASA format effectors
to paper tape-oriented machines is not guite as severe. There
are syntactic tokens (see section [11) which enable the sending
FP to say "begin the next record, skipping two {or three, or morel".
Thus a 133-byte print line uith a zero as the first byte would be
encoded as "begin next record, skipping tuo" followed by an
encoding of 132 bytes of data. The receiving FP could reproduce
the effect by inserting the right number of carriage returns.

le assume that the donor FP can always encode a file native
to its host operating sustem if it knous the global file type, and
that the encodement will contain only the format effectors,
etc., defined by the corresponding GFTT entru.

The transmission of an encoded file betueen
TBH's aluays uses the byte size specified in the GFTT; the
minimum byte size is & bits. The receiver FP, of course,
must use a storage technique that loses no bits, but is free to
store the file in any form it wishes. Transmission is by transmission
records: the size of each succeeding record is specified by a
transmission record descriptor. uwhich is a production of the I.L.
grammar.

In thae fallowing section, the productions of the grammar
are presented in groups, and the meaning of each group is
discussed. Extended BNF is used. UWhen a number is quoted ["255")
it represents 2n 8-bit (i.e., the lou-order & bits of a byte uhich is
the same size as the width of the connection) control item
{see section IIl). An unguoted number is an &-bit integer
{unless othernise noted). HWhere a non-terminal of the grammar is
followed by "(p:ql" it signifies the presence of from p to q copies
of the non-terminal.

It is not possible to present the transmission protocal
and the file encodement grammar together in BNF; so ue
first give the transmission protocol, indicate hou the file data is
formed from that, and specify the relationship betusen the productions
of the transmission protocel and the encodement grammar.

Z. The File Transmission Grammar.

A. <FILE-TRANSMISSION> ::= <TRANSMISSION-RECORD> (1:n)"251"

An NSW transmission is defined as a sequence of transmission
records terminated by an end-of-transmission bute.

B. (a) <TRANSMISSION-RECORDs> ::= "24B" <NB> <FILE-BYTE= (NB8)

(b} <MB> 2:= unsigned quantity formed by concatenating two
transmission bytes: the number of file data bytes

254

(

"FILE PACKAGE DESIGN SPECIFICATION

vhich follow in the transmissinﬁ.
(c) <FILE-BYTE> := one byte of file.

The byte size iz taken from the GFTT for all tha above.

The encoded text file is the concatenztion of all file
butes received,

C. <TEXT-FILES> := concatenation <FILE-BYTE> (1:m)

The donor FP may choose to place as many file buytes in a
transmission record as desired, except that the receiver’s maximum
transmission record size may not be exceeded, and l.L. records may
not be broken (see belou).

D. (a) <TEXT-FILES> ::= <TEXT-FILE>
(a*) | <SUBFILES>
(b} <SUBFILES> ::= <SUBFILE>(l:p)
(c) <SUBFILE> ::= <TEXT-FILE>"255"

The file to be transferred may be a single file {Da) or
a2 concatenated sequence of files {Da', Db), =ach of which
is a single file followed by an end-of-file byte (DOcl.

E. {a} <TEXT-FILE= ::= <RECORD={1l:qg)
{b) <RECORD=> ::= <DATA-REC>
{c) <DATA-REC> ::= <REC-CTL><SEQ-WUM=[8:1)<ITEH=(1:s)

A file is a sequence of one or more records {Ezl, each
of which is a data record (Eb). A data record [Ec) consists of
a record control byte {or bytes: see beloul}, an ecptional sequence
GFTT number {which must conform to the descriptor in thel,
and a sequence of items. (If the GFTT has indicated that sequence
numbers of length n are present, the n bytes follouwing the <HEC-CTL>
item are to be interpreted as the <S5E0-NUM=.) A transmission
record may not begin or end Within an encodement record.

F. (a) <ITEH> ::= <S5TRING=>
(a") | <REPEAT >
{a""]} l<FILL>
(b) <STRING> ::= <STR-LEN><CHAR>(B:r)
{c) <REPEAT> ::= <REP-LEM=<CHAR=
[d] {STH_LEN} = == HEI' I1Il (£ I s 1“12?”
(el <FILL> z:= "128"1...1"131"
{f) <REP-LEM> = "192"]...["223"

An item is a string (Fa), a repeated character (Fa’}, or

a fill character indicator (Fa""). The string is a

length factor follousd by that number of characers (Fbl. The
repeated character is a factor follousd by the character (Fe).
The string length explicitly ranges from B-127. The fill
number k is expressed as 128+k, and the repeat factor k

as 192+k. (The compression implied by these productions

FILE PACKAGE DESICN SPECIFICATION

is optional, e.qg., a2 string of blanks may be passed
uncompressed if the implementer so desires.!

G. (a) <REC-CTL> ::= "224"1...1"233"]|"249"|"258"
1"252" <M1= 1"253" N2>
{b} <CHAR> ::= any 8-bit pattern
{c) <Nl> :z:= unsigned 8-bit quantity
{d) <NZ> ::= unsigned 16-bit quantity (formed by concatenating
w2 8-bit bytes)

See next section of this chapter for a further description of
{Gal).

3. Syntactic Tokens

The follouing is a table of suyntactic tokens which represent
record and text control information.

Bit Pattern Value Range Heaning

Besiaenenen 8-127 String of length B <= n <= 127

1 Bseaenernene 128-191 Fill character repeated B <= n <= B3
times

11 8sesemxn 192-223 Repeat next char. B <- n<= 31 times

11118881 248 Begin transmission record

11118Bxxx 241-247 {Reserved)

11111288 248 Begin header

11111818 258 Form feed

11111811 251 End file transfer

111111e8 252108 - Begin new record, skipping 8-255
records

11111181 253 Begin neu record, skipping B-(27%x16-1)
records

11111118 254 Begin contraol record

11111111 255 Delimiter of subfiles

The above set of syntactic control items allow for an easy
implementation of a generator and a parser for the grammer. Every
control items is one byte long and indicates, explicitly or implicitly,
the length of the following data item.

=4

H\

+FILE PACKAGE DESIGMN SPECIFICATION

Chapter &:

Translation Semoantics

: File translation is a major problen which the File
Package must address. UWhen the FP is forced to translate & file,
it must map a foreign representation of the file onto its "logical
equivalent"” in the local file system,

Definition of this eguivalence seems beyond the current
state of the art. 0One can, houwever, state some desired properties.
Suppose identical line printers are connected to donor and receiver.
Then receiver's copy is logically equivalent to the original only
if their listings are visually identical. The same applies to
decks of punched cards (both binary and text) which may be read
or punched. The hope is that equivalence at this level will extend
to tools. Indeed, most tools tend to deal with their text input
files in units of lines, irrespective of file organization. Solving
the listing problem is very close to solving the “line of text"
problem which should provide the desired mapping of the output of one
tool into the input of another,

Uhat kind of difference in file systems causes this
problem? It is that some file sustems represent text files as
"unit=records" and others as "paper-tapes". GSequential access to
lines of text is available at the file system level in a unit-record
machine. That is, a lou level access method can easily produce
the next line of text: that line will consist of only characters and
blanks.

The situation is entirely different in 3 paper-tape machine.
A lou-level access method is used to read bytes from the file which
must be interpreted in order to produce a line of text in the above
sense. Besides characters and spaces, "format effectors" are
stored in paper-tape files. Indeed the paper-tape file organization
is a descendant of the paper-tape controlled typeuriter. Format
effectors may be grouped into horizontal ones (e.g., carriage return
(CR), backspace (BS)}, and horizontal tab (HT)) and vertical ones
{e.q., line fead (LF), form feed (FF), and vertical tab (VT}).
Vertical effectors have no horizontal component, and vice-versa.
Vertical motion is always doun the pags.

Those format effectors which cause horizontal motion to the
left have no analog in unit record machines and a mapping onto a
reasonable equivalent must be found. Of course, if such motion is
paired with vertical motion no problem arises; in fact, sender is
requested. to treat CR-LF and LF-CR pairs as record delimiters in
the intermediate language sense. The basic question is this: |if
the paper tape sequence "b BS /" is to become, the tuo records:

YL

FILE PACKAGE DESICGN SPECIFICATION

(record) ' b
(skip B) /

should the secquence "b BS BS a"

become

{(record) b

{(skip @) a

or

(record)] ab ?

For purposes of display the single record version is both

correct and optimal, but for tool use, it should be left to FP.
and tool implementors to make the choice.

order:

A brief discussion of each of the format effectors is in

HT - never poses a translation problem as it is
equivalent to one or more blanks. Houever, hosts
are free to choose their oun :
tab-stop conventions; therefore, uwe have included
a description of them in the file's HEADER record.

BS - has already been discussed.

CR - unless paired with a vertical format effector
is equivalent to back-spacing to column 1.

LF - causes the beginning of a new record beginning
at current column, The new record is blank to the left

of current column.

FF - easily translates to record environments, but
with the same column proviso attached to LF.

YT - is similar to HT. Stops are specified in
HEADER record. :

The follouing algorithm sketch may be useful. It describes

a procedure by which consecutive characters from a paper tape are
encoded into a compact record file - compact because "a BS BS b"
produces only one record. 1t is called by the folloning control

program: «

CHARACTER PT(LTH) /+PAPER TAPEz:/
INTEGER LTH f+LENGTH OF PTs/

S

'FILE PACKAGE DESIGN SPECIFICATION

/=CHARACTER ARRAY FOR BUILDING RECORD-EQUIVALENT OF PTs/

o

CHARACTER C (MAXLRECL,LPP, HAXPAGES, HAXDYPRT)

/#PARAMETERS OF Cu/

INTEGER MAXLRECL, /sMAX LENGTH G- RESULTANT RECORDS:/
LPP, Sl INES PER R=ESULTAMT PAGE::/
MaXPAGES, f=PAGE CAPACITY OF Cs/f
HMAXOVPRT, FoHAX OVERPRINT CHARACTERS

PER CHARACTER POSITION:/S
BOTTOM, A+B0TTOM HMARGIN OF PAGE

[N LINES (BOTTOM < LPP)%/
HTSTOP, " /#HORIZONTAL TAB STOP,

[N COLUMNSs:/
VTSTORP /+VERTICAL TAB 5T0P,
- [N LINES:/

/+INDEX YARIABLES FOR ACCESSING THE ELEMENTS OF Csf

INTEGER COL, /#MUMBER OF COLUMN WITHIN LINE/
LINEXGSS /+NUMBER OF LINE WITHIN PAGEsw:/
PAGE /+NUHBER OF PAGE WITHIN G/

. JwPRE-BLANK THE ENTIRE CHARACTER ARRAY, C, AND INITIALIZE
({' COLUMN, LINE, AND PAGE TO THE UPPER LEFT-HAND
CORNER OF PAGE 1./

Ch’r,'.\':,'f:,:'.-] = U
coL

LINE
PAGE

1
1
1

nnn

FOR I =1 TO LTH OO
CALL URECIPTI(I))

The procedure UREC will build the character array C whose
slices C(&,LINE,PAGE,OVFRT) represent unit records uhich
result from a compacting paper-tape conversion. For
illustration, PT can contain TWO-LINES and THREE-LIMES (skip to
next multiple of 2 or 3 lines) as uell as HALF-PAGE and
THIRD-PAGE wvertical format effectors.

PROCEDURE UREC (CHAR) :

CHARACTER CHAR

Q

Pty

FILE PACKACGE DESIGM SPECIFICATION

PROCEDURE FMFEED:

BEGIN

LIME = 1

PAGE = PAGE + 1
END FHFEED

/+«PROCEDURE OF UREC TO
WHEN STOPS ARE EVERY

ADVANCE TO A VERTICAL TAB STOP
"FRAME"™ LINES ON A PAGE OF "LPP" LINES.s/

PROCEDURE ADVANCE (FRAME) :
BEGIN
INTEGER MELLINE, FRAME

NEWLINE = FRAME®CEIL (LINE/FRAME)+1
IF NEWLINE > LPP THEN CALL FHFEED
ELSE LINE = NEULINE
END ADVANCE

/w1S-CRAPHIC MEANS CHARACTER VISIBLY PRINTS:/
IF IS5-CRAPHIC{CHARY} THEN
BEGIN
IF COL > MAXLRECL THEN SIGNAL ("LRECL EXCEEDED")
IF C{COL, LINE, PAGE, MXOYPRT) NE * * THEN
SIGNAL ("TOO MANY OVERPRINTS")
OVPRT = 1
UNTIL C(POS, LINE, PAGE, DVPRT) EQ * °
00 OVPRT = OVPRT + 1
C(COL, LINE, PAGE, OYPRT) = CHAR
CoL = COL + 1
END

ELSE

CASE OF CHAR

SPACE: COL = COL + 1

BKSP: IF COL > 1 THEN COL = COL - 1

CR: BOEEEE

HTAB: COL = HTSTOPSCEIL (COL/HTSTOP) + 1

LF: IF LINE > LPP — BOTTOM THEN CALL FMFEED
: ELSE LINE = LINE + 1

VTAB: CALL ADVANCE (VTSTOP)

HALF-PAGE: CALL ADVANCE (LPP/2)

THIRD-PAGE: CALL ADVANCE (LPP/3)

THO-LINES: CALL ADVANCE (2)

THREE-LINES: CALL ADVANCE (3)

RE TURN

END UREC

L

'FILE PACKAGE DESIGN SPECIFICATION

APPENDIX A.
This appendix to the File Package Specification describes

the internal structure of an MNSW file catalog entry in the Works
Manager data base, and gives the syntax of an NSU file name.

UG

FILE PACKAGE DESICN SPECIFICATION

1. MNSW FILE CATALOC EMTRY
1.8 Introduction

Anm NGW file catalog entry contains a file's complete
NSL file name, and a list locating all physical copies of the file.
The NSW file name contains not only an ordinary name part, but
also the file's semantic type, global file type, and system
attributes.

1.1 Top level structure

The top level structure of an NSU file catalog entry
is simply:

NSU=-fi lenams _
list (physical-copy-descriptor)

1.2 The NSW file name
The top level structure of the NSH-filename component is:

file-identifier
system-attributes

The file-identifier has three components:

name-part
semantic-type
global=file-tupe

Tuo file catalog entries are distinct if their file-identifiers
are distinct. Thus the components of the file-identifier are exactly
those required for name disambiguation.

1.2.A Name-part

A name-part consists of 1 to 18 ordered name-components.
Eanh name-component is 1 to 12 characters from the alphabet:

AB ... Z

ab ... z

8l ... 9

= {hyphen)

-7 (under|ine)

{S Scha$fner)

Y3

."..-—-.__‘l

*FILE PACKAGE DESIGN SPECIFICATION

1.2.B Semantic-type

Examples of semantic-tuype are FORTRAN-SRC, FORTRAM-REL,
COB0L-REL, etc. The semantic-tupe is specifizd by tool HAHRANT.
Semantic-tuypes are generally asserted on output from a creator
tool and are of interest to a file user tool. The complete list
of semantic-types is maintained separatelu.

1.2.C Global=file-type

The global-file-typs is @ key into thz global file type
table, which specifies the file's physical storage properties
needed to do network transfer of the file betuszen storags
hosts. The global-file-type is independent of the semantic-type,
al though many pairs are meaningless. Examples of global-file-{ype
are 1BH-TXT, 1BX-BIN, 368B-BIN, etc.

1.2.0 Suystem-attributes

System-attributes record information uvhich may be used
in file specification, but uhich is not needad for name disambiguation.
The semaphore has the furthsr property of providing an access fock
to the file.

Currently defined system-attributes are:
semaphore:
The semaphore is either B - mzaning not set -

or it is the pair {(project, node-name) indicating
the setter of the semaphore.

creator:

The creator of a file is identified by the pair
(project, node-name). Each member of the pair has the
same syntax as a name-component

(see 1.2.A above).

time-pf-creation:

Time-of-creation is a l4-digit decimal integer
consisting of (left to rightl:

year (4}

r month (2]

1 day (2} i
hour (2)

minute (2}
second (2}

u%

FILE PACKAGE DESICN SPECIFICATION

The time reference is GHT.
last-reader:

Same as creator.
time-of-last-read:

Same as time-of-creation.

last-modifier:

The last modifier of a file is the last person

who replaced thz file - i.e., did RENAMEGLOBAL,
COPYGLOBAL, PUT ete. uwith greplace set to T. The
distinction betueen creation and modification is

thus that a file is created if an explicit DELETE

is tdone before entering a new filename, and a file is
modified if the DELETE is done implicitly by

setting greplace to T. The structure of last-modifier

is the same as creator.
time-of-last-modification:

Same as time-of-creation.

1.3 Physical-copy-descriptor

There is an entry in the list of physical-copu-descriptors
for each file system copy of an NSH file. Thus, if there is a file
copy on each of BBNB, ISIC, and 1510, there will be three
phusical-copy descriptors in its catalog entry list. File copies
exported from the file system into user filespace or tool uworkspace
are not in the file system and have no physical-copy-descriptors.

The top level structure of a physical-copu-descriptor is:

intermediate-language-flag
location-attribute

The location-attribute has four components:

host
directory
name
phus

1.2.A Host

This item contains the network address of the storage
host uhose fi}e system contains the file copu.

A

*FILE PACKAGE DESICN SPECIFICATION

1.3.B Directory

This item specifies the directory containing the file
copy if the host's file system supports directories, or is empty.
1.3.C HName

This item contains the complete file copy nmame in the local
file system syntax.

1.4.C Phys

This item may contain voluma, unit, or other specifications
appropriate to the local file system.

1.4 Public/Private
An MNSH user is alloued to see all parts of a catalog entry

comprising the NSU-filename. He is not allowzd to see the
phuysical -copy-descripters.

FILE PACKAGE DESIGN SPECIFICATION

2:

NSW FILENAME SYMTAX

An NSU file name has the following, where the following

are meta syntactic:
n), In,ml,

<NSU-filename>

<file-identifier>

<name-par t>
<semantic-typs
<global-file-type>
<host> ;

<type>

<sustem-attributes>

<semaphore>
<creator:>
<last-readers>
<last-modifier>
<time-of-creation>

<time-of-last-read>

<time-of-last-modifications

=oroject-node>
<time>

<name-component=>,
<project>,
<node=-name>

-

<jidentifier>

<character>

Ll

(.

RS

]
<file-identifier> ; <system-attributess

<name-par t>/<semantic-tupe>;
<global-file-type>

<name-component> [.<name-component>} [B,n]

ST = {FORTRAN-SRCIFORTRAN-RELI...}

GT = <host> = <type>
{18X1368IMULTICS]. ..}

{TXTISEQ-TXTIBINI. ..}

<semaphore>; <creators> : <last-reader}
<last-modifier> ; <time-of-creation:

<time-of-last-read> i
<time-of-last-nodification=

- e

Si

{<project-node> |8]
CH = <project-nodes
{<project-noda> 18}
LM = <project-node>
TC = <time=>
TR = {<time>|8]

TH = <time>

<project> + <node-name>

:= <digit> [4] {:<digit> [2]) [5]

<identifier>
:= <character> [1,n]

s= AIBI ...1Zl1albl...1Z181..191-1«
(7-bit ASCII)

S|

+FILE PACKAGE DESIGN SFECIFICATION

. <digit> := BI11 ... 191 [(7-bit ASCII)
| 2.1 Example
An example of a complete NSW file name is:
HALDO, HENRY.REL/S5T=FORTRAN-REL ; GT=358-51IMN;
SM=IPTO+CARLSON:CR= IPTD+CAHLEUN LR:E?NPHES+Fﬂh'UF
LH=IPTO+CARLSON: TC=1976:11:13:86:31:59; TR=1975:11:13:11:19:82;
TﬂzlS?E:ll:lS:BE:Sl:ES
2.2 Blanks

An NSU filename may contain no embedded blanks.

&

Q

2L

FILE PACKAGE DESIGM SPECIFICATION

E.I FILESPECS and ENTRYNAMES:

Any portion of an NSU filename may be specified by user
for retrieving @ file. HMissing name componznis may be indicated by
ellipses - e.g. WALDOD...REL. Attributes may be given in any
order - see example belouw.

3.1 MNames returned by Horks Manager procedures.

Horks manager procedures return the file-identifier
componegnt of an NSU filenams.

=4

33

» ' JFILE PACKAGE DESIGN SPECIFICATIDH

APPENDIX B.

(’- ——

This appendix to the File Package Specification describes
the Global File Type Table in the Works Manager data bassa.

ey

S

FILE PACKAGE DESIGM SPeCIFICATION

1. OCLOBAL FILE TYPE TABLE
1.8 Introduction

The global file type table is maintained in the NS data
base. It is a static table with one entry for each global-file-type
known to the file system. Each entry in the table contains information
needed by a File Package instance to correctly interpret the
intermediate language representation of a file native to a
different host.

In general, a File Package instance will only need the
global-file-type in order to deal with a file native to its oun host -
in particular, to translate that file inte File Package intermediate
language. It will require the complete table entry to translate
a foreign file from FP intermediate languags to a corresponding
native form. The Horks Manager is responsible for obtaining
the entry contents from ths global file table and passing
them to the File Package (S5=e= File Package interface specification).

1.1. Global File Table Entry

The top level structure of a global file table entry is:

structural-attributes
physical-attributes

The structural-attributes component describes the gross
structural properties of the file, and the physical-attributes
componsnt gives the description of the intermediate language
{IL) entities so implied. Takesn together, they imply
the legal syntactic elemsnts which will appear in the IL
representation of the file.

1.2 -Structural-attributes
This item has thre=s nﬂmpnnentﬁ:.
class

keys
dimension

1.2.A Class

This item currently specifies uhether the file is a text
or binary file,

S

("

*FILE PACKAGE DESICM SPECIFICATION

1.2.B Keys

This item specifies uhether the file has keys or not.

1.2.C Dimension

This item contains the file dimension as an integer, based
on a concept due to Charles Muntz of COMPASS and elaborated by
Hobert Braden of UCLA. The value may currently be beuteen one and
four, With the following interpretation:

value 1: Stream data, e.g. a file of ASCI! text not blocked
into lines. Such a file may not have keys.

value 2: Record/line oriented file, e.g. a TENEX S05 file.

value 3: A text file in line printer format, with a class of
format effectors excluding overprints.

value 4: A text file in line printer format including
overprint format effectors.
1.3 Physical-attributes
This item has thres components:
key-descriptor
TAB-descriptor
IL-bytesize
1.3.A Key-descriptor
This item is an integer specifying thz number of bytes
in an IL sequence number if the file has keys.
1.3.8 TAB-descriptor
A TAB-descriptor has tuo components:

horizontal-tab-descriptor
list (vertical-tab-descriptor)

Tab-descriptors in each case are identical in form having
tvo components:

control-character
etop-descriptor

S

FILE PACKAGE DESIGM SPECIFICATION

vhere a stop-descriptor is either an integer stop
increment, or~ a list of integer stop positions

1.3.C IL-bytesize

The IlL-bytesize is an integer, the number of bits in the IL
byte for this file.

5

