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1. Introduction

Checksums are included in packets in  order that errors
encountered during transmission may be detected. For Internet
protocols such as TCP [1,9] this is especially important because
packets may have to cross uwireless netuorks such as the Packet
Radio Netuork [2) and Atlantic Satellite Network [3] where
packets may be corrupted. Internet protocols (e.g., those for
real time speech transmission) can tolerate a certain level of
transmission errors and foruward error correction technigues or
possibly no checksum at all might be better. The focus in this
paper is on checksum functions for protocols such as TCP where
the required reliable delivery is achieved by retransmission.

Even if the checksum appears good on 2@ message which has been
received, the message may still contain an undetected error. The
probability of this is bounded by 2¢x(-C) where C is the number
of checksum bits. Errors can arise from hardware (and softuare)
mal functions as well as transmission errors. Harduware induced
errors are usually manifested in certain well knoun ways and it
is desirable to account for this in the design of the checksum
function. ldeally no error of the "common harduare failure" type
Hould go undetected.

An example of a failure that the current checksum function
handles Eﬁ sessfully is picking up a bit in the netuork interface
{for 1/0 buks, memory channel, etc.). This uill aluays render the
checksum bad, For an example of how the current function s
inadequate, assume that a control signal stops functioning in the
network interface -and the interface stores zeros in place of the
real data. These "all =zero" messages appear to have valid
checksums, Noise on the "There's Your Bit" line of the ARPANET
Interface [4] may go undetected because the extra bits input may
cause the checksum to be perturbed li.e., shifted) in the same
way as the data uas.

Al though messages containing undetected errors uill occasional ly
be passed to higher levels of protocol, it is likely that they
will not make sense at that level. In the case of TCP most such

messages will be ignored, but some could cause a connection to be
abor ted. Garbled data could be viewed as a problem for a layer
of protocol above TCP which itself may have a checksuming scheme.

This paper is the first step in design of a neu checksum function

for TCP and some other Internet protocols. Several useful
properties of the current function are identified. If possible
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these should be retained in any new function. A number of
plausible checksum schemes are investigated. Of these only the
"product code" seems to be simple enough for consideration.

2. The Current TCP Checksum Function

The current function is oriented todards sixteen-bit machines
such as the PDP-11 but can be computed easily on other machines
{e.g., POP-18). A packet is thought of as a string of 16-bit
bytes and the checksum function is the one's complement sum (add
with end-around carryl of those bytes. It is the one's
complement of this sum which is stored in the checksum field of
the TCP header. Before computing the checksum value, the sender
places a zero in the checksum field of the packet. If the
checksum value computed by a receiver of the packet is zero, the
packet is assumed to be valid. This is a consequence of the
"negative" number in the checksum field exactly cancelling the
contribution of the rest of the packet.

lgnoring the difficulty of actually evaluating the checksum
function for a given packet, the way of using the checksum
described above is quite simple, but it assumes some properties
of the checksum operator (one's complement addition, "+" in wuhat
follous):

(P1) 4+ is commutative. Thus, the order in wuhich
the 16-bit butes are "added" together is
unimpor tant.

(P2) 4+ has at least one identity element (The
current function has two: +B and -B). This
allows the sender to compute the checksum
function by placing @ zero in the packet checksum
field before computing the value.

(F3) + has an inverse. Thus, the receiver may
evaluate the checksum function and expect a zero.

(P4) + is associative, allowing the checksum field
to be anyuhere in the packet and the 16-bit butes
to be scanned sequentially.

Mathematically, these properties of the binary cperation "+" over
the set of 16-bit numbers forms an Abelian group [5]. Of course,
there are many Abelian groups but not all would be satisfactory
for wse as checksum operators. {Another operator readily
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available in the PDP-11 instruction set that has all of these
properties is exclusive-0OR, but XOR is unsatisfactory for other

reasons. )

Albeit imprecise, another property which must be preserved in any
future checksum scheme |s:

(P51} + is fast to compute on a variety of machines
With limited storage reguirements.

The current function is quite good in this respect. On the
POP-11 the inner loop looks |ike:

Loor:  ADD (R1)+,RB s+ Add the next 16-bit bute
ADC RB : Make carry be end-around
SOR RZ,LOD0OP : Loop over entire packet.

{ 4 memory cycles per 1E-bit byte )

On the POP-1B properties Pl-4& are exploited further and tuo
l16-bit bgtes per loop are processed:

. LDOP: ILDB THIS,PTR ; Get 2 1B-bit bytes
ADD SUM, THIS ¢ Add into current sum
JUMPGE  SUM, CHKSUZ 3 Jump if fewer than B carries
LOB THIS, [POINT 28,5UM,191 3 Get left 16 and carries
ANDI SUM,177777 ; Save just low 16 here
ADD SUM, THIS ;1 Fold in carries
CHKSUZ: S0JG COUNT,LOOP ;3 Loop over entire packet

{ 3.1 memory cycles per 16-bit byte )

The "extra" instruction in the Iloops above are required to
convert the tuo's complement ADD instruction{s] into a one's
complement add by making the carries be end-around. 0One's
complement arithmetic is better than two's complement because it
is equally sensitive to errors in all bit positions. 1f tuo’s
complement addition were used, an even number of 1's could be
dropped (or picked uwpl in the most significant bit channel
without affecting the value of the checksum, It is just this
property that makes some sort of addition preferable to a simple
exclusive-OR which is frequently used but permits an even number
of drops (pick ups) in any bit channel. RIMIPB paper tape format
used on POP-1B=s [1B] uses two's complement add because space for
the loader program is extreme}g limi ted.
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Another property of the current checksum scheme is:

{(PE) Adding the checksum to a packet does not change
the information bytes. Peterson [El calls this a
"systematic" code.

This property allous intermediate computers such as gateway
machines to act on fields (i.e., the Internet Destination
Address) without having to first decode the packet. Cuyclical
Redundancy Checks wused for error correction are not systematic
either. Houwever, most applications of CRCs tend to emphasize
error detection rather than correction and consequently can send
the message unchanged, With the CRC check bits being appended to
the end. The 24-bit CRC used by ARPANET IMPs and Very Distant
Host Interfaces [4] and the ANS] standards for 888 and B258 bits
per inch magnetic tapes (described in [11]1) use this mode.

Note that the operation of higher level protocols are not (by
design) affected by anything that may be done by a gateway acting
on possibly invalid packets. It is permissible for gateways to
validate the checksum on incoming packets, but in general
gateways will not know how to do this if the checksum is a
protocol-specific feature.

A final property of the current checksum scheme uhich is actually
afﬂnscquence of Pl and P4 is:

(P71} The checksum may be incrementally modified.
This property permits an intermediate gateway to add information

to a packet, for instance a timestamp, and “"add" an appropriate
change to the checksum field of the packet. Note that the

checksum will still be end-to-end since it was not fully
recomputed,
pe Product Codes

Certain "preduct codes" are potentially useful for checksuming
purposes. The follouing is a brief description of product codes
in the context of TCP. HMore general treatment can be found in
Avizienis [7) and probably other more recent Works.

The basic concept of this coding is that the message (packet) to
be sent is formed by transforming the original source message and
adding some ‘“check" bits. By reading this and appluing a
{possibly different) transformation, a receiver can reconstruct

ity
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the original message and determine if it has been corrupted
during transmission.

Mo Hs Hr

I A | code I 71 decode | A |

1 B | E=D 111 =m> |B|

I C I | 4 | | C I

----- | [P —————
I 2 1 check plus "valid" flag
----- info

Original Sent Reconstructed

With product codes the transformation is Ms = K &« Mo . That is,
the message sent is simply the product of the original message
Mo and some wuwell knoun constant K . To decode, the received
Ms is divided by K uhich will yield Mr as the quotient and
4] as the remainder if Mr is to be considered the same as [o .

Tha first problem is selecting a "good" value for K, the ‘“check
factor", K must be relatively prime to the base chosen to
express the message. {Example: Binary messages with K
incorrectly chosen +to be & This means that Ms looks exactly
like Mo except that three zeros have been appended. The only
L1?| the message could look bad to a receiver dividing bu & is if
the error occurred in one of those three bits.)

For TCP the base R will be chosen to be ZwxlE. That is, every
16-bit byte (word on the POP-11} wuill be considered as a digit of
a big number and that number is the message. Thus,

Mo = SIGHA [ Bi # (Reaeil] ’ Bi is i-th byte
i=B to N

Hs = K % Mo

Corrupting a single digit of HMs will yield Hs' = Hs 4or-
C#(Rej) for some radix position j . The receiver will compute
Ms' /K = Mo +or- C(R#xj)/K. Since R and K are relatively prime,
C#(Rsww j) cannot be any exact multiple of K. Therefore, the
division Will result in a non-zero remainder which indicates that
Ms' is a corrupted version of Ms. As uwill be seen, a good
choice for K is (Ratb - 1), for some b which is the "check
length" which controls the degree of detection to be had for

e
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burst errors which affect a string of digits li.e., 16-bit bytes)

in the message. In fact b will be chosen to be 1, so K will
be 2vw#l6 - 1 so that arithmetic operations will be simple. This
means that all bursts of 15 or feuer bits will be detected.

According to [7) this choice for b results in the fol lowing
expression for the fraction of undetected uweight 2 errors:

f = 16(k-1)/132(16k=3) + (B/k)) where k is the message length.

For large messages f approaches 3.125 per cent as k goes to
infinity.

Multiple precision multiplication and division are normal ly quite
complex operations, especially on small machines which typically
lack even single precision multiply and divide operations. The
exception to this is exactly the case being dealt with here --
the factor is 2wxl6 -1 on machines with a word length of 16
bits. The reason for this is due to the follouing identity:

U\'r[nfn'rj] = 0, mod (R-1) Be<0<R
That is, any digit @ in the selected radix (8, 1, ... R-1)
multiplied by any pouwer of the radix will have a remainder of ]

when divided by the radix minus 1.

Example: In decimal R = 1B. Pick 0 = E.

’ E = B#39 + b B, mod 9
BB = E+3 + B 6, mod 9
EBB = BE %3 + B G, mod 9 etc

More to the point,

rem| {30088+1P8B+4B88+18+5) /3)

(3 mod 9) + (1 mod 8) + (6 mod 9) + (1 mod 9) + (5 mod 3)
(I+1+6+145) mod 3

14 mod 9

5

rem{(31415/3)

nA a8 K

So, the remainder of a number divided by the radix minus one can
be fourd by simply summing the digits of the number. Since the
radix in the TCP case has been chosen to be 2wwlE and the check
factor is 2wwlB - 1, a message can guickly be checked by summing
all of! the 1B-bit words (on a POP-11), with carries being
end-around. |f zero is the result, the message can be considered
valid., Thus, checking @ product coded message is exactly the
same complexity as with the current TCP checksum!
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In order to form Ms, the sender must multiply the multiple
precision "number" Mo by 2wl6 - 1. Or, Ms = (2wxlE)Mo - Mo.
This is performed by shifting Mo one wuhole word's worth of
precision and subtracting Ho. Since carries must propagate
betueen digits, but it is only the current digit which is of
interest, one's complement arithmetic is used.

(22416)Ho = HoB + Mol + MoZ + ... + MoX + B
- HGE - {"DB*’HDI"‘#IIIII.!'I +“UH}

- —— = P ———————— TRl ikt

Ha = MeB & Msl + ... - MoX

A loop which implements this function on a POP-11 might look
like:

LOOP: MOV -2(R2},RB  ; Next bute of (2wwlE}Mo
SBC RB : Propagate carries from last SUB
SuB (R2)+,RB : Subtract bute of Mo
HOVY RE, (R3)+ : Store inMs

S0B R1,LO0OP + Loop over entire message

( & memory cycles per 16-bit byte)

Note that the coding procedure is not done in-place since it is
not suystematic. In general the original copy, Mo, will have to
be retained by the sender for retransmission purposes and
therefore must remain readable. Thus the MOV RB, (R3}+ is
required which accounts for 2 of the & memory cycles per loop.

The coding procedure will add exactly one 16-bit word to the
message since Ms < (2wxlB)Mo . This additional 16 bits will be
at the tail of the message, but may be moved into the defined
location in the TCP header immediately before transmission. The
receiver uill have to undo this to put Ms back into standard
format before decoding the message.

The code in the receiver for fully decoding the message may be
inferred by observing that any word in [ls contains the
difference betuween tuo successive words of Mo minus the carries
from the previous word, and the low order word contains minus the
lou word of Mo. GSo the low order (i.e., rightmost) word of Mr is
just the negative of the low order byte of Ms. The next word of
Mr is the next word of Hs plus the just computed word of Mr
plus the carry from that previous computation.

A slight refinement of the procedure is required in order to

protect against an all-zero message passing to the destination.
This will appear to have a valid checksum because Ms'/K = B/K

L
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- B with B remainder. The refinement is to make the coding be
Ms. = KiMo + C where C is some arbitrary, Well-knoun constant.
Adding this constant requires a second pass over the message, but
this will typically be very short since it can stop as soon &s
carries stop propagating. Chosing C =1 is sufficient in most
cashs.

The product code checksum must be evaluated in terms of the
desired properties Pl - P7. [t has been shoun that a factor of
tuo more machine cycles are consumed in computing or verifying a
product code checksum (PS5 satisfied?).

Although the code is not suystematic, the checksum can be verified
guickly without decoding the message. I[f the Internet
Destination Address is located at the least significant end of
the packet (uhere the product code computation begins) then it is
possible for a gateway to decode only enough of the message to
gee this field uithout having to decode the entire message.
Thus, PE is at least partially satisfied. The algebraic
properties Pl through P4 are not satisfied, but only a small
amount of computation is needed to account for this —- the
measage needs to be reformatted as previously mentioned.

P7 is satisfied since the product code checksum can be
incrementally updated to account for an added Word, although the
procedure is somewhat invelved. Imagine that the original
message has tuwo halves, Hl and H2. Thus, Mo = Hlw (Reeej) + HZ.
The timestamp word is to be inserted betueen these halves to form
a modified Mo' = HlwlRsewe(j+1)) + Tw(Rexj) + H2. Since K  has
been chosen to be R-1, the transmitted message Ms® = Mo’ (R-1).
Then,

Ms' = Msi? 4+ T(R-1) (Ryewej) + PZ{{R-1)4r2)
= MssR 4+ TeelRewelj+1))  + Twe(Reewj) + P23 (Ren2) - 20P2+R - P2

Recalling that R is 2w%lB, the word size on the FOP-11,
multiplying by R means copying doun one word in memory. So,
the first term of Ms® is simply the unmodified message copied
doun one word. The next term is the new data T added into the
Ms' being formed beginning at the (j+l)th word. The addition is
fairly easy here since after adding in T all that ig left is
propagating the carry, and that can stop as soon as no carry is
produced. The other terms can be handle similarly.
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4. More Complicated Codes

There exists a wealth of theory on error detecting and correcting
codes. Peterson [B] is an excellent reference. [Most of these
"CRC" schemes are designed to be implemented wusing @ shift
register with a feedback netuork composed of exclusive-DAs.
Simulating such a legic circuit with a program would be too sloud
to be useful unless some programming trick is discovered.

One such trick has been proposed by Kirstein [8]. Basically, a
feu bits (four or eight) of the current shift register state are
combined with bits from the input stream (from Mol and the result
is uced as an index to a table which yields the new shift
register state and, if the code is not systematic, bits for the
output stream (Ms). A trial coding of an especial ly "good" CRC
function using four-bit bytes shoued shoued this technique to be
about four times as slouw as the current checksum function. This
was true for both the PDP-18 and PDP-11 machines. Df the
desirable properties |listed above, CRC schemes satisfy only P3
{1t has an inverse.), and PE (It is systematic.). Placement of
the checksum field in the packet is critical and the CRC cannot
be incrementally modified.

Al though the bulk of coding theory deals With binary codes, most
of the theory works if the alphabet contains q symbols, uhere
g is a pouer of a prime number. For instance q taken as Zu#wlb
should make a great deal of the theory useful on a word-by-word
basis.

5. Outboard Processing

Uhen a function such as computing an involved checksum requires
extensive processing, one solution is to put that processing into
an outboard processor. In this way "encode message" and "decode
message" become sinule instructions which do not tax the main
host  processor. The Digital Equipment Corporation VAX/788
computer is equipped with special harduare for generating and
checking CRCs [13). In general this is not a very good solution
since such a processor must be constructed for every di fferent
host machine which uses TCP messages.

[t is conceivable that the gateway functions for a large host may

be performed entirely in an "Internet Frontend Machine". This
machine would be responsible for foruwarding packets received

)
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gither from the netuork(s) or from the Internet protocol modules
in the connected host, and for reassembling Internet fragments
into segments and passing these to the host. Another capability
of this machine would be to check the checksum so that the
segments given to the host are knoun to be valid at the time they
leave the frontend. Since computer cucles are assumed to be both
inexpensive and available in the frontend, this seems reasonable.

The problem With attempting to validate checksums in the frontend
is that it destroys the end-to-end character of the checksum. l1f
anything, this is the most powerful feature of the TCP checksum!
There is a way to make the host-to-frontend link be covered by
the end-to-end checksum, A separate, small protocol must be
doveloped to cover this link. After having validated an incoming
packet from the network, the frontend would pass it to the host
saying "here is an Internet segment for you., Call it #123". The
host wuould save this segment, and send a copy back to the
frontend saying, "Here is what you gave me as #123. Is it OK?".
The frontend  would then do a word-by-word comparison with the
first transmission, and tell the host either "Here s #123
again", or "You did indeed receive #123 properly. Release it to
the appropriate module for further processing.”

The headers on the messages crossing the host-frontend link would
most likely be covered by a fairly strong checksum so that
information like which function is being performed and the
message reference numbers are reliable. These headers uould be
quite short, maybe only sixteen bits, so the checksum could be
quite strong. The bulk of the message would not be checksumed of
course,

The reason this scheme reduces the computing burden on the host
is that all that is required in order to validate the message
using the end-to-end checksum is to send it back to the frontend
machine. In the case of the POP-1B, this requires only 8.5
memory cycles per 1B-bit byte of Internet message, and only a few
processor cycles to setup the required transfers.

B. Conclusions

There ie an ordering of checksum functions: first and simplest is
none at all which provides no error detection or correction.
Second, is sending a constant which is checked by the receiver.
This also is extremely weak. Third, the exclusive-OR of the data
may be sent. XOR takes the minimal amount of computer time to
generate and check, but is not a good checksum. A tuo's
complement sum of the data is someuhat better and takes no more

- 18 -
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computer time to compute. Fifth, is the one's complement sum
which is what is currently used by TCP. It is slightly more
expensive in terms of computer time. The next step is a product
code. The product code is strongly related to pre's complement
sum, takes still more computer time to use, provides a bit more
protection against common harduare failures, but has some
objectionable properties. Next is a genuine CRC polynomial code,
used for checking purposes only., This is very expensive for a
progran to implement. Finally, a full CAC error correcting and
detecting scheme may be used.

For TCP and Internet applications the product code scheme is
viable. It suffers mainly in that messages must be (at least
partiallyl decoded by intermediate gatedays in order that theuy
can be forwarded. Should product codes not be chosen as an
improved checksum, some slight modification to the existing
scheme might be possible. For instance the "add and rotate"
function used for paper tape by the PDP-B6/1B group at the
Artificial Intelligence Laboratory at M.I.T. Project MAC [12]
could be useful if it can be proved that it is better than the
current scheme and that it can be computed efficiently on a
variety of machines.

=11 -
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