fostsf
TEN #g~ 2/MAC7)

TCP (Version 2) Specification
g‘w ﬁﬁ 2'?#2-’

I

SPECIFICATION OF INTERNET TRANSMISSION CONTROL PROGRAM

TCP (Yersion 2)
Yinton Cerf

March 1377

TCP (Yersion 2) Specification

TABLE OF CONTENTS

[ntroduction page
The TCP Interface to the User page
2.1 The TCP as a post office page
2.2 Sockets and Addressing page
2.3 TCP user commands page
2.3.1 A Note on style page
2.3.2 Open page
2.3.3 Send page
2.3.4 Receive page
2,.3.5 Close pags
2.3.6 Interrupt page
2.3.7 Status page
2.3.8 Abort page
2.4 TCP to user messages page
2.4.1 Type codes page
2.4.2 Message format page
2.4.3 Event codes page
Higher level protocols page
2.1 Introduction page
3.2 Uell knmoun sockets page
3.3 Reconnection protocs| page
TCP Design page
4.1 Introduction page
4.2 Connection management page
4.2.1 Initial sequence number selection : page
4.2.2 Establishing a connectjon page
4.2.3 Half-open connections page
4.2.4 Resynchronizing a connection page
4.2.5 Closing a eonnection page
4.2.86 TCP Connection State Transitions page
4.3 TCP data structures page
4.3.1 Introduction page
4.3.2 Internetuork Packet Format page
4.3.3 Transmission Control Block page
4.4 Structure of the TCP page
4.4,1 Introduction page

—
& W W~y dy

11
13
14
14
15
16
16
16
16
17
19
19
19
19
23
23
28
28
29
32
37
43
44
68
68
68
74
77
77

TCP (Version 2) Specification

4.4,2 Input packet handler page 79

%.4,3 Reassembler page &1

4.4.4 Packetizer page 83

4.4.5 Output packet handler page 84

4.4.6 Retransmitter page 84

4.5 Buffer and window allocation page 85
4.5.1 Introduction page 85

4.5.2 The send side page 85
4.5.3 The receive side page 8B

5. References page 83
A. Appendix A - Pathology of Connection Management page 183

L.

TCP (Version 2) Specification

Introduction

This document describes the functions to be performed by the internetwork
Transmission Contraol Program [TCP) and its interface to programs or users
that require ite services. There have been tuo previous TCP specifications,
the first [CDS74) defined version 1 of TCP. A second, [PFGR7Eal, was written
for the Defense Communication Agency in connection uith its AUTODIN Il
project. That version marked Improvements (such as a specification of the
resynchronization process) and additions (security and priorityl which were
known requirements of AUTODIN I1. The present specification represents
version 2 TCP, a direct descendent of the version 1 found in [CDS74].
Elements of version 2 can be found in [PGR7Eal, but the overlap is
incomplete. A simpler resynchronization procedure has been found: an
"option" field has been defined for the TCP header to accommodate not onliy
security and priority but other special features conncted with, for example,
packet speech services, diagnostic timestamping, and so on.

Version 2 eliminates all error messages but for RESET and this simplifies the
header format. There are =stj|| many local errors which can be reported to the
user, but none of these need cross the netuork(s) betueen TCP's,

Connection closing is slightly more elaborate in Version 2 than in version 1
because the FIN signals must be acknouledged. Furthermore, the INT and FIN
facilities no longer cause flushing of the data stream. A separate "flush"
facility was tested, but eliminated, in the end. Dealing with flow-contraol
Windous that have gone to zero is a new feature of version Z, and, finally,
the reassembly of fragments into segments has been more careful ly specified.
Im the AUTODIN Il version of TCP, modifications were made to support secur ity
and priority. These have been left out of this version 2 specification
pending their further assesement in connection with ARPA-sponsored
end-to-end security projects. A version 3 TCP is anticipated which will
address facilities needed for reliable broadcast services, packet speech, an
graphics, as uwell as security, priority, intermetuork flou contral and
routing.

Although the list of participants in the TCP work is very long [see
[CEHKKS?77] - the final TCP project report), special acknouwledgements are due
to R. Kahn, R. Tomlinson, Y. Dalal, R. Karp and C. Sunshine for their active
participation in the design of TCP.

TCP {(Yersion 2) Specification

Several basic assumptions are made about process to process communication and
these are listed here without further justification. The interested reader is
referred to [CK74, Tomlinson74, Belsnes74, Dalal?4, Dalal75, Sunshine7Ba,
CEHKKS77) for further discussion. Processes are viewed as the active
elements of all HOST computers in a netuork. Even terminals and files or
other [/0 media are viewed as communicating through the use of processes.
Thus, all network communication is viewed as inter-process communication,

Since a process may need to distinguish among several communication streams
betueen itself and another process [or processes], we imagine that each
process may have a number of PORTs through which it communicates with the
ports of other processes,

Since port names are selected independently by each operating system, TCP, or
user, they may not be unique. To provide for unigque names at each TCP, we
concatenate a NETHORK identifier, and a TCP identifier with a port name to
create a SOCKET name which will be unique throughout all netuorks connected
together.

A pair of sockets form a CONNECTION which can be used to carry data in either
direction [i.e. full duplex]. The connection is uniquely identified by the
<local socket, foreign socket> address pair, and the same |local socket name

can participate in multiple connections to different foreign sockets [see
gsection 2.2].

Processes exchange finite length LETTERS as a uway of communicating; thus,
letter boundaries are significant. Houever, the length of a letter may be
such that it must be broken into SEGMENTS before it can be transmitted to its
destination. We assume that the segments will normally be reassembled into a
letter before being passed to the receiving process. Throughout this
document, it is legitimate to assume that a segnent containe all or a part of
a letter, but that a segment never contains parts of more than one latter.

Furthermore, there is no restriction on the length of a letter. A connection
might be formed to send a single long letter (a stream of bytes, in effect).
In fact, processes can communicate via TCP without ever marking the end of a
letter, but we think this is atypical of most anticipated use.

We specifically assume that segments are transmitted from Host to Host

TCP (Yersion 2} Specification

through means of a PACKET SWITCHING NETWORK [PSN] [RW78, Pouzin73]. This
assumption is probably unnecessary, since a circuit suitched network, or a
hybrid combination of the tuo, could also be used, but for concreteness, We
explicitly assume that the hosts are connected to one or more PACKET SWITCHES
[PS] of a PSN [HKOCW7@, Pouzin74, SW71].

Processes make use of the TCP by handing it letters (or buffers filled with
parts of a letter). The TCP breaks these inteo segments, if necessary, and
then embeds each segment in an INTERNETWORK PACKET. Each internetwork packet
is in turn embedded in a LOCAL PACKET suitable for transmission from the host
to one of its serving PS. The packet suitches may per form further formatting,
fragmentation, or other operations to achieve the delivery of the local
packet to the destination Host.

The term LOCAL PACKET is used generically here to mean the formatted bit
string exchanged between a host and 8 packet suwitch. The format of bit
strings exchanged between the packet switches in a PSN will gererally not be
of concern to us. If an internetuork packet is destined for a TCP in a
foreign PSN, the packet is routed to a gateway which connects the origin PSN
With an intermediate or the destination PSN. Routing of internetuork packets
to the gateway may be the responsibility of the source TCP or the local PSN,
depending upon the PSN services available.

One model of TCP operation is to imagine that there iz a basic gateuay
associated with each TCP which provides an interface to the local network.
This basie gateway performs routing and packet reformatting or embedding, and
may also implement congestion and error control betueen the TCP and gateways
at or intermediate to the destination TCP.

At a gateway betueen networks, the internetwork packet is unurapped from its
local packet format and examined to determine through which netuork the
internetuork packet should travel next. The internetwork packet is then
wrapped in a local packet format suitable to the next network and passed on
to a new packet suitch,

A gateuway is permitted to break up a segment carried by an internetuark
packet into smaller FRAGMENTS if this is necessary for transmission through
the next network. To do this, the gateway produces a set of internetuork
packets, each carrying a fragment. Fragments may be broken into smal ler ones

TCP (Version 2) Specification

at intermediate gateways. The packet format |s designed so that the
destination TCP can reassemble fragments into segments and verify the
end-to-end checksum associated with the segment. Segments, of course, can be
reassembled into letters,

The TCP is responsible for regulating the flow of internetuork packets to and
from the processes it serves, as a way of preventing its host from becoming
saturated or overloaded uith traffic. The TCP is also responsible for
retransmitting unacknouledged packets, and for detecting duplicates. A
consequence of this error detection/retransmission scheme is that the order
of letters received on a given connection can alse be maintained
[CK74,Sunshine74]. To perform these functions, the TCP cpens and closes
connections betueen ports as deseribed in section 4.2, The TCP performs
retransmission, duplicate detection, sequencing, and flow contral on all
communication among the processes it serves.

The TCP Interface to the User

The functional description of user commands to the TCP is, at best,

fictional, since every operating system will have different facilities,
Consecuently, we must warn readers that various TCP implementations may have
different user interfaces. These will all be TCP's, as long as control

messages are properly interpreted or emitted, as required. In spite of this
caveat, it appears useful to have at least one concrete view of a user
interface to aid in thinking about TCP-derived services.

2.1 The TCP as a Post Dffice

The TCP acts in many Ways |ike a postal service since it provides a Hay
for processes to exchange letters uith each ather. |t sometimes happens
that a process may offer some service, but not know in advance what its
correspondents’ addresses are. The analogy can be draun with a mail order
house which opens a post office box which can accept mail from any source.

Unlike the post box, however, once a letter from a particul ar ﬁ‘f‘_
correspondent arrives, a port becomes specific to the correspondent until i
the ouner of the port declares otherwise (thus making the TCP more like a =T
telephone service). Without this particularization, the TCP could not ey
perform its flow control, sequencing, duplicate detection, end-to-end i ﬁﬁii'f
acknouledgement, and error control services. vty

f Cnmute 71OV

TCP (Yersion 2) Specification

2.2 Sockets and Addressing

He have borroued the term SOCKET from the ARPANET terminology [CCC7E,
OCA7E]. In general, a socket is the concatenation of a NETWORK identifier,
TCP identifier, and PORT identifier. A CONNECTION is fully specified by
the pair of SOCKETS at each end since the same local socket name may
participate in marny connections to different foreign sockets,

Once the connection is specified in the OPEN command [see section 2.3.27,
the TCP supplies a [short] local connection name by which the user refers
te the connmection in subsequent commands., In particular this facilitates
using connections with initially unspecified foreign sockets,

TCP's are free to assaciate ports uith processes houever they choose.
However, several basic concepts seem necessary in any implementation.
There must be well known sockets which the TCP associates only with the
"appropriate" processes by some means. e envision that processes may
"oun" sockets, and that processes can only initiate connections on the
sockets they oun [means for implementing ounership is a local issue, but
e envision a Request Port user command, or a method of uniquely i
allocating a group of ports to a given process, e.g. by associating the
high order bits of a port name with a8 given process].

Once initiated, a connection may be passed to another process that does
not oun the local socket [e.g. from Iogger to service process]. Strictly
speaking this is a reconnection issue which might be more elegantly
handled by a general reconnection protocol as discussed in section 3.3. To
simplify passing a connection within a single TCP, houever, such
"invisible" switches may be allowed, as in TEMEX systems.

Of course, each connection js associated with exactly one process, and any
attempt to reference that conmnection by another process will be signal led
as an error by the TCP. This prevents another process from stealing data
from or inserting data into another process’ data stream, and also
prevents masquerading, spoofing, or other forms of malicious mischief.

A connection is initiated by the rendezvous of an arriving internetwork
packet and a waiting Transmission Control Block [TCR] created by a user
OPEN, SEND, INTERRUPT, or RECEIVE command [see section 2.3]1. The matching

TCP (Version 2) Specification

of local and foreign socket identifiers determines when a successful
connection has been initiated. The cannection becomes established uhen
sequence numbers have been synchronized in both directions as described in
section 4.2.2.

It is possible to specify a socket only partially by setting the PORT
identifier to zero or setting both the TCP and PORT identifiers to zero. A
socket of all zero is called UNSPECIFIED. The purpose behind unspeci fied
sockets is to provide a sort of "general delivery" facility [useful for
processes offering services on well known sockets],

There are bounds on the degree of unspecificity of socket identifiers.
TCB's must have fully specified local sockets, although the foreign socket
may be fully or partly unspecified. Arriving packets must have fully
specified sockets.

We employ the following notation:

*.4y.z = fully specified socket with x=net, y=TCP, z=port

*x.g.u = 38 above, but unspecified port

*.u.u = as above, but unspecified TCP and port

U.u.u = completely unspecified

With respect to implementation, u = B [zerol
He illustrate the principles of mateching by giving all cases of incoming
packets which match with existing TCB’s. Generally, both the local

(foreign) socket of the TCB and the foreign (local) socket of the packet
must match.

TCP {Yersion 2) Specification

TCB local TCB foreign Packet local Packet foreign

{al g.b.c e.f.g e.f.g a.b.c
(=3} a.hb.c e, f.u e.f.g a.b.c
{c) a.b.c E.U, U e.f.g a.b.c
(d] g.b.c Us ol e.f.g a.b.c

There are no other legal combinations of socket identifiers Which match.
Case (d} is typical of the ARPANET well knoun socket idea in which the
well knoun socket (a.b.c) LISTENS for a8 connection from any (u.u.u)

socket. Cases (b) and (c) can be used to restrict matching to a particular
TCP or net. More elaborate masking facilities could be implemented without
acdverse effects, so this matching facility could be considered the minimum
acceptable for TCP operation.

2.3 TCP User Commands
2.3.1 A Note on Style

The following sections tunctional ly characterize a USER/TCP inter face.
The notation used is similar to most procedure or function calls in
high level languages, but this usage is not meant to rule out trap type
service calls [e.g. SVC's, UUD's, EMT's,...].

The user commands described belou specify the basic functions the TCP
Wwill perform to support interprocess communication. Individual
implementations should defing their own exact format, and may provide
combinations or subsets of the basic functions in single calls. In
particular, some implementations may wish to automatically OPEN a
connection on the first SEND, RECEIVE, or INTERRUPT issued by the user
for a given connection.

In providing interprocess communication facilities, the TCP must not
only accept commands, but alse return information to the processes jt
serves. This communication consists of:

TCP (Version 2) Specification

(a) general information about a connection [e.g., interrupts,
remote close, binding of unspecified foreign socket].

(b) replies to specific user commands indicating succcess or various
types of failure.

Al though the means faor signalling user processes and the exact format
of replies uill vary from one implementation to another, it would
promote common understanding and testing if a common set of codes were
adopted. Such a set of event codes is described in section 2.4,

2.3.2 Open
Format: DPEN (local port, foreign socket [, timeout])

We assume that the local TCP is aware of the identity of the

processes it serves and will check the autharity of the process to use
the connection specified. Depending upon the implementation of the TCP,
the source netuork and TCP identifiers will either he supplied by the

TCP or by the processes that serve it [e.g. the program which
interfaces the TCP to its packet suitch or the packet suiteh itself]l.
These considerations are the result of concern about security, to the
extent that no TCP be able to masgquerade as another one, and so on.
Similarly, no process can masquerade as another without the collusion
of the TCP,

If no foreign socket is specified [i.e. the foreign socket parameter is
8 or not presentl, then this constititutes a LISTENING local socket
uwhich can accept communication from any foreign socket, Provislon is
also made for partial specification of foreign sockets as described in
section 2.2.

¥ the specified connection is already OPEN, an error is returned,
otherwise a full-duplex transmission contral block [TCB] is created and
partially filled in uith data from the OPEN command parameters. The TCB
format is described in more detail in section 4,3,2.

Ne netuork traffic need be generated by the OPEN command. The first
SEND or INTERRUPT by the local user or the foreign user will typically

-18-

TCP (Version 2) Specification

cause the TCP to synchronize the connection, although synchronization
could be immediately initiated on non-listening opens.

The timeout, if present, permits the caller to set up a timeout for all|
buffers transmitted on the connection. [f a buffer is not successfully
delivered to the destination within the timeout period, the TCP will
abort the connection. The present global default is 38 seconds. The
buffer retransmission rate may vary, and is the responsibility of the
TCP and not the user., Most likely, it will be related to the measured
time for responses from the remote TCP.

Oepending on the TCP implementation, either a local connmection name
will be returned to the user by the TCP, or the user will specify this
local connection name (in which case another parameter is needed in the
call)l. The local connection name can then be used as a short hand term
fer the connection defined by the <local socket, foreign sockets pair.

Responses from the TCP which may occur as a result of this call are
detailed in sections 2.4 and 4.2.6.

2.3.32 Send

Format: SEND(local connection name, buffer address, byte count, EOL
flag [, timeout] }

This call causes the data contained in the indicated user buffer to be
sent on the indicated connection, 1f the connection has not been
openad, the SEND is considered an error, Some implementations may allou
users to 5END first, in which case an automatic OPEN would be done., If
the calling process is not authorized to use this connection, an error
is returned.

I'f the EOL flag is set, the data is the End Of a Letter, and the EOL

bit will be set in the last internetuork packet created from the buffer
[see section 4.3.2 - internetuork packet formatl. If the EOL flag is
not set, subsequent SENDs will appear to be part of the same letter.

If no foreign socket was specified in the OPEN, but the cornection is
established [e.g. because a LISTENing connection has become specific

-11-

TCP (Yersion 2) Specification

due to a foreign packet arriving for the local socket] then the
designated buffer is sent to the implied foreign socket. In general,
users uho make use of OPEN with an unspecified foreign socket can make
use of SEND without ever explicitly knowing the foreign socket address.

However, if a SEND is attempted before the foreign socket becomes
specified, an error will be returned. Users can use the STATUS call to
determine the status of the comnection, In some implementations the TCF
may notify the user uhen an unspecified socket is bound.

If the timeout is specified, then the current timeout for this
connection is changed to the new one.

In the sinplest implementation, SEND would mot return control to the
sending process until either the transmission was complete or the
timeout had been exceeded. This simple method is both highly subject to
deadlocks [for example, bath sides of the connection might try to do
SENDs before doing any RECEIVEs] and of fers poor performance, so it is
not recommended. A more sophisticated implementation would return
immediately to allow the process to run concurrently with netuork [/0,
and, furthermore, to allow multiple SENDs to be in progress., Multiple
SENDs are served in first come, first served order, sa the TCP will
queue those it cannot service immediately,

Responses from the TCP uhich may occur as a result of this call are
detailed in sections 2.4 and 4.2.6.

We have implicitiy assumed an asynchronous user interface in which a
SEND later elicits some kind of SIGNAL or pseudo-interrupt from the
serving TCP. An alternative is to return 3 response immediately. For
instance, SENOs might return immediate local acknouledgment, even if
the packet sent had not been acknouledged by the distant TCP. UWe could
optimistically assume eventual success. [f we are Wrong, the

connection will close, anyuay, due to the timeout. In implementations
of this kind (synchronous), there will still be some asynchronous
signalling, but these will deal with the connection itself, and not

with specific packets or lettars.

NOTA BENE: In order for the process to distinguish among error or

-12-

TCF (Version 2) Specification

Success indications for different SENDs, the buffer address should be
returned along with the coded response to the SEND request. We will
offer an example event code format in section 2.4, showing the
information which should be returned to the calling process.

2.3.4 Receive
Format: RECEIVE (local connection name, buffer address, byte count)

This command allocates a receiving buffer associated with the specified
connection. If no OPEN precedes this command or the calling process is
not authorized to use this connection, an error js returned.

In the simplest implementation, control would not return to the calling
program until either the buffer was filled, or some error occcurred, but
this scheme is highly subject to deadlocks [see section 2.3.3]. A more
sophisticated implementation would permit several RECEIVE's to be
outstanding at once. These would be filled as letters, segments, or
fragments arrive. This strategy permits increased throughput, at the’
cost of a more elaborate scheme [possibly asynchronous] to notify the
calling program that a letter has been received or a buffer filled.

I'f insufficient buffer space is given to reassemble a complete letter,
the EOL flag will not be set in the response to the RECEIVE. The buffer
will be filled with as much data as it can hold (see section 2.4,2),

The remaining parts of a partly delivered letter uill be placed in
buffers as they are made available via suceessive RECEIVES. 1§ a number
of RECEIVES are outstanding, they may be filled with parts of a single
long letter or with at most one letter each. The avent codes associated
with each RECEIVE will indicate what is contained in the buffer.

To distinguish among several outstanding RECEIVES, and to take care of
the case that a letter is smaller than the buffer supplied, the event
code is accompanied by both a buffer pointer and a byte count
indicating the actual length of the letter received.

Responses from the TCP which may occur as a result of this command are
detailed in sections 2.4 and 4.2.E.

=13~

TCP (Version 2) Specification

Alternative implementations of RECE]VE might have the TCP allocate
buffer storage, or the TCP might share a ring buffer with the user.
Variations of this Kind uill produce obvious variation in user
interface to the TCP.

2.3.5 Cloze

Format: CLOSE{ local connmection name)

This command causes the connection epecified to be closed. If the
connection is not open or the calling process is not authorized to use
this connection, an error is returned. Closing connections is intended
to be a graceful operation in the sense that outstanding SENDs will be
transmitted (and retransmitted), as flou control permits, until all
have been serviced. Thus, it should be acceptable to make several SEND
calls, followed by a CLOSE, and expect all the data to be sent to the
destination. It should also be clear that users should continue to
RECEIVE on CLOSING connections, since the other side may be trying to
transmit the last of its data. Thus, CLOSE means "I have no more to
send” but doss not mean "I will not receive any more." [t may happen
lif the user level protocol is not well thought out) that the closing
side is unable to get rid of all its data before timing out. In this
event, CLOSE turns into ABORT,and the closing TCP gives up.

The user may CLOSE the connection at any time on his oun initiative, or
in response to various prompts from the TCP [e.g., remote closze
exscuted, transmission timeout exceeded, destination inaccessiblel.

Because closing a connection requiras communication With the foreign
TCP, connections may remain in the closing state for a short time.
Attempts to reopen the connection before the TCP replies to the CLOSE
command will result in errors,

Responses from the TCP which may occur as a result of this call are
detailed: in sections 2.4 and 4.2.8.

2.3.6 Interrupt

Format: INTERRUPT(local connection name)

-14-

1]

Wa =

TCP (Yersion 2) Specification

A special control signal is sent i0 the destination indicating an
interrupt condition. This tacility can be used to simulate "break"
signals from terminals or error or completion codes from 1/0 devices,
for example, The semantics of this signal to the receiving process are
unspecified, The receiving TCP will signal the interrupt to the
receiving process upon receiving all data preceding the interrupt.

If the connection is not open or the calling process is not authorized
to use this connection, an error is returned,

Responses from the TCP which may occur as a result of this call are
detailed in sections 2.4 and 4.2.G.

2.3.7 Status

Format: STATUS(local connection name)

This is an implementation dependent user command and could be excluded
without adverse effect. Information returned vould tupically come from
the TCB (see section 4.3.3) associated with the connection.

This command returns a data block containing the following information:

local socket, foreign socket, local connection name, receive Wwindow,
send Window, connection state, number of buffers awaiting
acknouledgement, number of buffers pending receipt [including
partial ones), default transmission timeout

Oepending on the state of the connection, or the implementation some of
this information may not be available or meaningful. If the calling
Process is not authorized to use this connection, an error is returned,

This prevents unauthorized processes from gaining information about a
connection,

Responses from the TCP which may occur as a result of this call are
detailed in sections 2.4 and 4.2.B.

o

TCP {(Yersion 2) Specification

2.3.8 Abort
Format: ABORT (local connectian nanmne)

This command causes al| pending SENDs, INTERRUPTS, and RECEIVES to be
aborted, the TCB to be removed, and a special RESET message to he sent
to the TCP on the other side of the connection. Depending on the
implementation, users may receive abort indications for each
outstanding SEND, RECEIVE, or INTERRUPT, or may simply receive an
ABORT-acknouledgment. The mechanism of resetting a connection is
discussed in sections 4.2.3 and 4.2.5.

Responses from the TCP which may occur as a result of this call are
detailed in sections 2.4 and 4.2.6.

2.4 TCP-to-User Messages

2.4.1 Tuype Codes

All messages include a tupe code which identifies the type of user call
to which the message applies. Tupes are:

8@ - General message, spontaneous |y sent to user
1l - Applies to OPEN

2 - Applies to CLOSE

3 - Applies ta INTERRUPT

4 - Applies to ABORT

18 - Appliea to SEND

20 - Applies to RECEIVE

38 - Applies to STATUS

2.4.2 Message Formats [notional)

All messages include the following three fields:

Type code
Local connection name
Event cade

-16=

TCP (Yersion 2) Specification

For message types B-4 [General, Open, Close, Interrupt, Abortl only
these three fields are necessaru.

For message type 18 [Send] one additional field is necessary;:
Buffer address
For message tupe 2B [Receive] three additional fields are necessary:

Buffer address
Bute count (counts bytes received)
End-of-Letter flag

For messape type 3@ [Status] additional data might include:

Local socket, foreign socket

Send window [measures buffer space at foreign TCP]
Receive window [measures buffer space at local TCPI
Connection state [see section 4.2.E]

Number of buffers auaiting acknouledgement

Number of buffers awaiting receipt

User timeout

Once more, it is important to note that these formats are notional.

Implementations which deal with buffering in different ways may or may

not need to include buffer addresses in some responses, for example.
2.%.3 Event Codes

The event code specifies the particular event that the TCP Hishes to

communicate to the user. Generally speaking, non-zero event codes

indicate import state changes or errors.

In addition te the event code, two flags may be useful to classify the

event into major categories and facilitate event processing by the

user:

E flag: set if event is an error

=17-

TCP (Version 2) Specification

P flag: set if permanent error {otheruise, retry may succeed).

Events are encoded in 8 bits, the tuo high order hits being reserved
for E and P flags, respectively.

Events specified so far are listed below with their codes and flag
settings.

flags code meaning
B general success
E,P 1 connection illegal for this process
2 unspecified foreign socket
has become bound
E.P 3 connection not OPEN
g insufficient resources
E 5 foreign socket not specified
ERp = connection already OPEN
7 unused
& unused
EVE 9 user timeout, connection aborted
18 unused
11 user interrupt receiwved
P 12 connection closing
E 13 general error
P 14 connection reset

Possible responses to each of the user commands are listed below,
Section 4.2,6 offers substantially more detail.

Tupe Blgenerall: 2,9,11,12,14

Type 1lopenl): 8,1,4,6,13

Tupe 2[closel: 8,1,3,9,13,14

Type 3linterruptl: 8,1,3,4,5,9,12,13, 14
Tupe 4[Abortl: 8,1,3,13

Type 1B[send]: 4,1,3,4,5,9,12,13,14
Type 2Blreceivel: B,1,3,4,9,12,13,14
Type 3@(status]: 8,1,3,13

-18-

TCP (Yersion 2) Specification

3. Higher Level Protocols

3.1 Introduction

It is expected that the TCP will be able to support higher level protocols
efficiently. It should be easy to interface existing ARPANET protocols
like TELNET [DCA76) and FTP [DCA7E] to the TCP. Support of Network Yoice
Protocol, Network Graphics Protocol and broadeast protocols has been left
to version 3 TCP, in preparation,

2.2 Uell Knoun Sockets

Well knoun sockets are a convenient mechanism for a priori associating a
socket name with a standard service. For instance, the "logger" process
might be permanently assigned to socket 1, and other sockets reserved for
File Transfer, Remote Job Entry, text generator, reflector, or sink (the
last being for test purposes). A socket name might be reserved for access
to a "look-up" service which would return the specific socket at which a
neuly instantiated service would be provided.

For compatibility with ARPAMNET socket naming conventions, We have reserved
8 few socket rnames as fol|lous:

n.t.1 = LDggEr‘ port
N.t.3 = File Transfer Port

n.t.5 = Remote Job Entry port

n® and "t" are netuork and TCP identifiers, respectively

TCF implementors should note, houwever, that the gender and directional ity
of NCP sockets do not apply to TCP sockets, so that even numbered as wel |
as odd ones can serve as uell known sockets. 3 n ot

3.3 Reconnection Protoeco|

Part identifiers fall into two categories: permanent and transient. For
example, a Logger process is generally assigned a port identifier that is

=19-

TCP {Yersion Z2) Specification

fixed and well knoun, Transient processes will in general have port
identifier's uhich are dynamical ly assigned.

In a distributed processing environment, two processes that don’t have
well knoun port identifiers may often wish to communicate. This can be
achieved uith the help of a uell knoun process using a reconnection
protocol. Such a protocol is briefly out!ined using the communication
facilities provided by the TCP. It essential ly provides a mechanism by
thich port identifiers are exchanged in order to establish a connection
hetueen a pair of sorckets,

Such a protocol can be used to achieve the dynamic establishment of new
connections in order to have multiple processes solving a problem
co-operatively, or to provide a user process access to a server process
via a logger, when the logger's end of the connection can not be invisibly
passed to the server process.

A paper on this subject by R. Schantz [Schantz74] discusses some of the
issues associated uith reconnection, and some of the ideas contained
tharein went into the design of the protocol outlined belou,

In the ARPANET, a protocol (called the Initial Connection Protocol
- [Postel72]) was implemented which would 2l low a process to connect to a
‘well known socket, thus making an implicit request for service, and then
be suwitched to another socket so that the well knoun socket could be freed
for use by others. Since sockets in our TCP are permitted to participate
in more than one connection name, this facility may not be explicitly
needed (i.e. connections <A,B> and <A,C> are distinguishablel.

Houever, the well knoun socket may be in one network and the actual
service socketls) may be in another netuwork {or at least in another TCP).
Thus, the invisible suitching of a connection from one port to anmother
within a TCP may not be sufficient as an "Initial Connection Protocol". UWe
imagine that a process wishes to use socket N1.T1.0 to access well knowun
socket N2.TZ.P. Houever, the process associated with socket N2.T2.P will
actually start up 3 neuw process someuhere which wWwill use N3.T3.5 as its
server socket. The N(i) and T(i) may be distinct or the same. The user
will send to N2.T2.P the relevant user information such as user name,
password, and account. The server will start up the server process and

=ZH-

L ‘—_.___‘_._-

TCP (Version 2] Specification

send to N1.T1.0 the actual service socket identifier: N3.T3.5. The
connection (NL.T1.Q0,M2.T2.P) can then be closed, and the user can do a
RECEIVE on (N1.T1,0,N3.72.S). The serving process can SEND on
(N3.T3.5.N1.71.Q). There are many variations on this scheme, some
involving the user process doing a RECEIVE on a different socket (e.g.
(NL.T1.X,U.U.U)) with the server doing SEND on (N3.T73.5,N1.T1.X).

Without shouwing all

the detail of sunchronization of sequence numbers and
the like,

we can illustrate the exchange as shoun below.

USER SERVER
1.RECEIVE (N2, T2.P,U.U.)

1. SEND(N1.T1.0,N2.72.P)==>

<== 2, SEND(NZ.T2.P,N1.T1.Q)

With "N3.T3.5" as data
2. RECEIVE(N1.71.Q,N2.T2.P)
3. CLOSE(N1.T1.Q,N2.T2.P}==>
<== 3, CLOSE (N2.T2.P,N1.T1.0Q)
4. RECEIVE(N1.T1.Q,N3.T73.5)
<== 4, SEND(N3.T3.5,N1.T1.0Q)
Reconnection Protocol Example
Figure 3.3-1
At this point, a connection is open betueen N1.T1.0 and N2.T3.5. A
variation might be to have the user do an extra RECEIVE on (N1.T1.X,U.U.W)
and have the data "N1.T1.X" be sent in the first user SEND. Then, the

Server can start up the real serving process and do a SEND on
(N3.T3.5,N1.T1.X} without having to send the "N3.T3.5" data to the user.

_21-

TCP (Version 2) Specification

Or perhaps both server and receiver exchange this data, to assure security
of the ultimate connection (i.e. some wild process might try to connect to
N1.T1.X if it is merely RECEIVING on foreign socket U.U.U.).

We do not propose any specific reconnection protocel here, but leave this
to further deliberation, since it is really a user level protocol issue.

e

TCP (Version 2) Specification

4. TCP Design
4.1 Introduction

The TCP is designed to offer highly reliable, sequenced, and

flou-contral led interprocess communication across network boundaries. A
fundamental notion in the design is that every octet (B bit bute! of data
in an internetwork packet has a sequence number. This permits gateways
to fragment packets as needed to get them across netuorks with short
packet sizes. Since every octet is sequenced, each of them can be
acknouledged individually or collectively., In particular, the
acknouwledgment mechaniem employed is cumulative so that an acknoul edgment
of seguence number X indicates that al| octets up to but not including X
have been received. Thie mechanism allous for straight-foruward duplicate
detection in the presence of retransmission.

I't is essential to remember that the actual sequence number space is
finite, though very large. In the current design, this space ranges from B
to 2v%32 - 1. Since the space is finite, all arithmetic dealing with
Sequence numbers must be performed modulo 2+%32. This unsigned arithmetic
preserves the relationship of sequence numbers as they cucle from 2432 -
1l to B again. The typical kinds of sequence rumber compar igsons which the
TCF must perform include:

(a) determining that an acknouledgenent refers to some sequence number
sent but not yet acknowledged,

(b) determining that al| sequence numbers occupied by a packet have
been acknowledged (e.g. to remove the packet from a retransmission

fueus,

(c) determining that an incoming packet contains sequence numbers which
are expected (i.e. that the packet "overlaps" the receive windou).

The TCP tupical ly maintaing status information about each connection, as
is illustrated in figure 4,1-1, belou.

L

TCP (Version 2) Specification

s 24,0
W , |

L = oldest, unacknouwledged sequence number

S = next sequence number to be sent

A = acknowledgement (next sequence number expected by the acknow |l edging
TCF)

H{i) = first sequence number of the i-th packet
T(i) = last sequence number of the i-th packet
TCP State Information for Sending Seguence Space

Figure 4,1-1

An acceptable acknouledgement, A, is one for which the inequal ity belou
holds:

B < (A=-L) <u (5§ -1L) (4.1-1)
He will often write equation (4.1-1) in the form below:
L <A <=5 (4.1-1")

24

TCP (Version 2) Specification

Note that all arithmetic is modulo 2¢:32 and that comparisons are
unsigned. "<=" means "less than ar equal.”

Similarly, the determination that a particular packet has been fully
acknouledged can be made if the equation below holds:

B < (T(i}) - L) <= {A - L) G ISR (4.1-2)

In this instance, H{i) and T(i} are related by the equation:
TUi) = H(i) + n(i) -1 (4.1-3)

where nli) = the number of octets occupied by the packet (including
controll. It is important to note that nli) must be non-zero; packets

. wWhich do not PECUpY any sequence space (e.g. empty acknouledgement
packets) are never placed on the retransmission gueue, so would not go
through this particular test,

Finallu, a packet is judged to occupy a portion of valid receive sequence
space if

@ <= (T-L})<IR-L) o g R IR I [(6.1-4)

Where T is the last sequence number pccupied by the packet and R is the
right edge of the receive uwindow, as shoun in figure 4,1-2,

-25.-

TCP (Version 2) Specification

L
I:; ::':::I;t::::l I:f:::.';::;I 1;;.:;:;;‘:.:;.;'
[REERA e R U)
Bl
L = next sequence number expected on incaming packets dl"'fﬁ;: L F
R = last sequence number expected on incoming packets, plus one
HUi) = first sequence number occupied by the i-th incoming packet
T(i) = last sequence number occupied by the i-th incoming packet
Receive Sequence State Information
Figure 4.1-2
R and L in figure 4.1-2 are related by the equation:
EK=L + U (4.1-5)

Where W = the receive window size

Note that the acceptance test for a packet, since it requires the end of a
packet to lie in the uindouw, is somewhat more restrictive than is
absolutely necessary. |f at least the first sequence number of the packet
lies in the receive window, or if some part of the packet lies in the
receive window, then the packet might be judged acceptable. Thus, in
figure 4.1-2, at least packets (H(1)-T(1)) and (HI2}-T{2}) are acceptable

by the strict rule and packet (H(3)-T(3)) may or may not be, depending on
the rule.

Note that when R = L, the receive windoy is zero and no packets should be
acceptable except ACK packets., Thus, it should be possible for a TCP to

Eons

¥oaale A TCP (Yersion 2) Specification

maintain a zero receive window while transmitting data and receiving ACKs
on a non-zero send Window.

We have taken advantage of the numbering scheme to protect certain control
information as well. This is achieved by implicitly including some
control flags in the s8quence space so they can be retransmitted and
acknouledged without confusion (i.e. one and only one copy of the control
will he acted upon). Control information is not physical ly carried in the
packet data space (see section 4.3.2 for typical internet TCP packet
format). Consequently, we must adopt rules for implicitly assigning
sequence numbers to control. Figure 4.1-3 shous uhere, in the sequence
Space occupied by a packet, the controls (if present) are considered to

lie. The packet length includes both data and segquence-space-occupying
controls,

SYN | INT | ARQ DATA RSN | FIN

K Packet Length —==ccemmeeo__ >
Implicit Control Sequence Number ing
Figure 4.1-3
The main jobs of the TCP are:

a. Connection management (establishing and closing ful I-duplex
connections)

b. "Packetizing" of user letters into segments for internet
transmission

c. Reassembly of fragments into segments and segments into letters.

d. Flou control, sequencing, duplicate detection, and retransmission
for each connection.

e. Reacting to user requests for service

iy

TCP (Version 2Z) Specification

In the sections which follou, we elaborate on the Way in which the TCP is
designed to carry out each of these tasks.

4.2 Connection Management
4.2.1 Initial Sequence Number Selection

The protocol places na restriction on a particular connection being
used over and over again. New instances of a connection will be
referred to as incarnations of the connection. The problem that arises
ouing to this is, "how does the TCP identify duplicate packets from
previous incarnations of the connection?". This problem becomes
harmful ly apparent if the connection is being opened and closed in
quick succession, or if the connaction breaks uwith loss of memory and
is then reestablished,

The essence of the solution [Tomlinson74] is that the initial sequence
& number [ISN] must be chosen so that a particular sequence number can
never refer to an "old" octet. Once the connection is established the
sequencing mechanism provided by the TCP filters out duplicates.

For an asstciation to be established or initialized, the tuo TCP's must
synchronize on each others initial sequence numbers. Hence the solution
requires a suitable mechanism for picking an initial sequence number,
and a slightly involved handshake to exchange the ISN's, A "three uay
handshake" is necessary because sequence numbers are not tied to a
global clock in the metwork, and TCP's may have different mechanisms
for picking the ISN's. The receiver of the first SYN has no uay of
knowing whether the packet was an old delayed one or not, unless it
remembers the last sequence number used on the connection (which is not
aluays possible), and so it must ask the sender to verify this SYN.

The "three way handshake" and the advantages of a "clock-driven" scheme
are discussed in [Tomlinson74]. More on the subject, and algorithms for
implementing the clock-driven scheme can be found in [Dalal74, Dalal?7s,
Cert76b].

o8-

TCP (Version 2) Specification

4.2.2 Establishing a connection

The "three-uay handshake" is essentially @8 unidirectional attempt to
establish a connection, i.e. there is an initiator and a responder.
The TCP can also establish a connection when a simultaneocus initiation
occurs. A simultaneous attempt occurs when one TCP receives a "SYN"
packet uhich carries no acknouledgement after having sent a "SYN"
earlier. Of course, the arrival of an old duplicate "SYN" packet can
potentially make it appear, to the recipient, that a simultaneous
connection initiation ie in progress. Proper use of "reset" packets
can disambiguate these cases, Several examples of connection
initiation are offered below, using a notation due to Tomlinson.
Although these examples do not shou connection synchronization using
data-carrying packets, this is rerfectly legitimate, so long as the
receiving TCP doesn't deliver the data to the user until it is clear
the data is valid (i.e. the data must be buffered at the receiver until
the connection reaches the ESTABLISHED state (see figure 4.2-1)).

-729-

CLOSER

_OPEN _LLOSE
Creele TOB delebe, TLI

SEMD avr
LT RAVPT

send SYN

fecelve SYN
send SYN, ACK

CLOSE
delete TCLB

recewe SYN
send ACK

—

TECEWE ACK fer SYN

recewe S MoK
tend ALK

ESTABLISHEL J"

CLOSE
—
send FIM

recewe FIH
send ACK

TeLewe Fin

send ALK Send FIN

CLOSIMNG

Jeceve ALK (. Fidd, -
deleteTed =
".-v"

timeoul
ABORT tomwmgc) L&,

TCP Connection State Oiagram

Figure 4,2-1

ELOSE TCP (Yersion 2) Specification

The simplest three-uay handshake is shoun in figure 4.2-2 belou.
figures should be interpreted in the following way. Each
numbered for reference purposes. Right arrous (--3) indicate departure
of a TCP packet from TCP A to TCP B, or arrival of a packet at B from

A. Left arrous (<--), indicate the reverse. Ellipsis (...) indicates a
packet uhich is still in the network (delayed]). An "XXX"

-3@-

indicates a

TCP (VYersion 2) Specification

packet which is lost or rejected, Comments appear in parentheses. TCP
states are keued to those in figure 4.2-1, and represent the state
AFTER the departure or arrival of the packet (uhose contents are shoun
in the center of each line). Packet contents are shoun in abbreviated
form, with sequence number, control flags, and ACK field. Other fields
such as uwindow, addresses, lengths, and text have been left out,
generally, in the interest of clarity.

TCP A TCP B
1. OPEN _ OPEN
2. SYN-SENT --> <SEQ 188><SYN>" ——> SYN-RECEIVED

3. ESTABLISHED <-- <5EQ 353}:5?N>éﬂEKIEI: <-- SYN-RECEIVED
4. ESTABLISHED --> <S5EQ 181><ACK HEl;ﬁ --> ESTABLISHED
S. [ESTABLISHED --> <SEQ 181><ACK 3B1><DATA} --> ESTABLISHED
Basic 3-Way Handshake for Connection Synchronization
Figure 4.,2-2

In line 2 of figure 4.2-2, TCP A begins by sending a SYN packet
indicating that it will use sequence numhers starting Wwith sequence
number 188. In line 3, TCP B sends a SYN and acknouledges the SYN it
received from TCP A. Note that (per figure 4.1-3). the acknou | edgement
field indicates TCP B is nou expecting to hear sequence 1B1, implicitiy
acknouledging the SYN which occupied sequence 188.

At line 4, TCP A responds with an empty packet containing an ACK for
TCP B's SYN, and in line 5, TCP A sends some data. Note that the
sequence number of the packet in line S is the same as in line &
because the ACK does not eccupy sequence number space (if it did, we
would wind up ACKing ACK'sl).

Simultaneous initiation is only slightly more complex, as is shown in

Y

TCP (Version 2) Spacification

figure 4.2-3. Each TCP cycles from OPEN to SYN-SENT to SYN-RECEIVED to
ESTABL ISHED.

The principle reason for the three-uay handshake is to prevent old
duplicate connection initiations from causing confusion. To deal with
this, a special control message, RESET, has been devised. A TCP which
receives a RESET message first verifies that the ACK field of the RESET
acknouledges something the TCP sent lotheruise, the message is

ignored). 1f the receiving TCP is in a non-synchronized state (i.e.
SYN-SENT, SYN-RECEIVED), it returns to UPEN on receiving an acceptable
RESET. If the TCP is in one of the synchronized states (ESTABLISHED,
FIN-WAIT, CLOSE-WAIT, CLOSING) it aborts the connection and informs its
user., UWe discuss this latter case under "hal f-open" connection in
sectiomn 4,2.3,

TCP A TCP B
(1. OPEN OPEN
2. SYN-SENT --» <SEQ 188><SYN> ... e
3. " SYN-RECEIVED <-- <SEQ 308><SYN>") <—— SYN-SENT _ _t*;
4. ... <SEQ 180><SYN> " --» SYN-RECEIVED -

5. SYN-RECEIVED --> <SEQ 181><ACK 3817, ..

B. ESTABLISHED <-- <SEQ 381><ACK 1815 <-- SYN-RECE]VED

7t ... <SEQ 1B1><ACK 3815 --> ESTABLISHED
Simul taneous Connection Synchronization

Figure 4.2-3

-37-

TCP (Version 2) Specification

TCP A TCP B
1. OPEN OPEN 7
2. SYN-SENT --> <SEQ 188><SYN> ool K;J:
3. (duplicate) ... <SEQ 188B><SYNs --> SYN-RECEIVED ¥

4. SYN-SENT <-- <S5EQ 38B8><SYN><ACK 1BB81M<-- SYN-RECEIVED
5. SYN-SENT --> <5EQ 1881><RST><ACK 3Rl>—-> OPEN (ACK is ok)

B. v+ <SEQ 188><SYN> --> SYN-RECEIVED

W

7. SYN-SENT <== <SE0 4B@><SYN><ACK 181> <-- SYN-RECEIVED

8. ESTABLISHED --> <SEQ 1B1>-ACK 481> --> ESTABLISHED

Recovery from Old Duplicate SYN

Figure 4.2-4

As a simple example of recovery from old duplicates, consider figure
4.2-4, At line 3, and old duplicate S5YN arrives at TCP B. TCP B
cannot tell that this is an old duplicate, so it responds normal ly
{Iine 4). TCP A detects that the ACK field is incorrect and returns a
RST (reset) with its SEQ and ACK fields selected to make the packet
believable. TCP B, on receiving the RST, returns to the DPEN state.
Hhen the original SYN (pun intended) finally arrives at line B, the
synchronization proceeds normally, [f the SYN at line E had arrived
before the RST, a more complex exchange might have occurred with RST's
sent in both directions,

-33-

TCP (Version 2) Specification

4.2.3 Hal f-Open Connections and Other Anomal ies

An established connection is said to be "half-ppen" if one of the
TCP's has closed or aborted the connection at its end without the
knowledge of the other, or if the tuo ends of the connection have
become desynchronized ouwing to 2 crash that resulted in loss of memory.
Such connections will dutomatical ly become reset if an attempt is made
to send data in either direction, Houwever, half-open connections are
expected to be unusual, and the recavery procedure is mildly involved,

I'f one end of the connection no longer exists, then an attempt by the
other user to send any data on it will result in the sending TCP
receiving a RESET control message. Such a nessage should indicate to
the receiving TCP that something is wrong and it is expected to ABORT
the connection.

Assume that two user processes A and B are communicating with one
another uhen a crash occurs causing loss of memory to A's TCP,
Depending on the operating system supporting A's TCP, it is likely that
SOme error recovery mechanism exists. When the TCP is up again A is
likely to start again from the beginning or from a recovery point. As a
result A will probably try to OPEN the cormection again or try to SEND
on the connection it believes open. In the latter case |t receives the
error message "connection not open" from the local TCP. In an attempt
to establish the connection A's TCP will send a packet containing SYN.
This scenario leads to the example shoun in figure 4.2-5, After TCP A
crashes, the user attempts to re-open the connection. TCP B, in the
meantime, thinks the connection is open.

~34-

TCP (Version 2) Specification

TCP A TCP B
1. (CRASH) (send 388, receive 1B8d)
Z. OPEN ESTABLISHED
3. SYN-SENT --> <SEQ 488> <SYN> --» (?7)
4. (1) <-=- <5E0 3B8><ACK 188> <-= ESTABLISHED

S. SYN-SENT --» <SEQ 188><AST><ACK 380> --> (Abort!!)
Hal f-Open Connection Discovery

Figure 4,2-5

When the SYN arrives at line 3, TCP B, being in a synchronized state,
responds with an acknouledgment indicating what sequence it naxt
expects to hear (ACK 188). TCP A sees that this packet does not
acknouledge anything it sent and, being unsynchronized, sends a reset
(RST) because it has detected a half-open connection. TCP B aborts at
line 5. TCP A will continue to retransmit its SYN and if the user at
TCF B re-opens the connection, eventually everuything will work out.

An interesting alternative case occurs when TCP A crashes and TCP B
tries to send data on what it thinks is synchronized connection. This
is illustrated in figure 4.2-6. In this case, the data arriving at TCP
A from TCP B (line 2) is unacceptable because no such econnection

exists, so TCP A sends a RST. The RST is acceptable so TCP B processes
it and aborts the connection,

In figure 4.2-7, we find the two TCP's A and B with passive connections

waiting for SYN. An old duplicate arriving at TCP B (line 2) stirs B
into action. A SYN-ACK is returned (line 3) and causes TCP A to

=35~

TCP (Yersion 2) Specification

generate a RST (the ACK in line 3 is not acceptable). TCP B accepts
the reset and returns to its passive OPEN state.

TCP A TCP B
1. (CRASH) (send 388, receive 188)
2. 172} <-- <SEQ 38B><ACK 18B><DATA 18> <-- ESTABLISHED
3. --> <5E0 18@><RST><ACK 318»> --> [(ABDRT!!)

Active Side Causes Half-Open Connection Discovery

Figure 4,2-B
TCP A TCP B
1. OPEN OPEN
o v+ <SEQ Zs<SY¥YN- --> SYN-RECEIVED -~ .*

3. (?7) <-= <SEQ X><SYN><ACK Z+l> <-- SYN-RECEIVED
4, -=> <S5EQ0 Z+1><AST><ACK X+1> --> ({return to OPEN!)
5. OPEN OPEN
Old Duplicate SYN Initiates a Reset on twe Passive Sockets
Figure 4.2-7

A variety of other cases are possible, all of which are accounted for
by the following rules for RST generation and processing.

Heset Ceneration

TCP (Version 2) Specification

l. If the connection is in any non-synchronized state [DPEN,
SYN-SENT, SYN-RECEIYED) or if the connection does not exist, a reset
(RST) should be formed and sent for any packet that does not
acknouledge something the receiver sent earlier. The RST should take
its SEQ field from the ACK field of the offending packet (if it has

one) and its ACK field should acknouledge all data and control in
the offending packet.

2. If the connection is in a synchronized state (ESTABLISHED,
FIN-WAIT,CLOSE-WAIT, CLOSING), any unacceptable packet should elicit
only an empty acknouledgment packet containing the current
send-sequence number and an acknouledgment indicating the next
sequence number expected to be recejved.

Reset Processing

All RST (reset) packets are validated by checking their ACK-fields
and SEQ fields (if appropriate}. [f the RST acknouledges something
the receiver sent (but has not yet received acknouledgment for), the
RST must be valid. RST packets will have ACK fields which
acknouledge any data and control in the offending packet to assure
acceptability of the RST.

The receiver of a RST first validates it, then changes state. I[f
the receiver was in a non-synchronized state (OPEN, SYN-SENT,
SYN-RECEIYED) it returns to the OPEN state [possibly modifying the
foreign socket specification in the process-see section 4.3.3). [+
the receiver was in a synchronized state (ESTABLISHED, FIN-WAIT,
CLOSE-WAIT, CLOSING), it aborts the connection and advises the user
(see section 2.4.3 - error 14).

4.2.4 Resynchronizing a Connection

A basic goal of the TCP design is to prevent packets from being emitted
With seguence numbers which duplicate those which are still in the
network. We want to assure this even if a TCP crashes and loses al |
knouledge of the sequence numbers it has been using. When new
connections are created, an initial sequence number (ISN) generator is
employed uhich selects a new 32 bit 1SN, The generator is bound to a

=37 =

TCP (VYersion 2} Specification

(possibly fictitious) 32 bit clock whose low order bit is incremented
roughly every 5B8 nanoseconds. The 1SN thus cycles every 4.55 hours,
approximately. Since ue assume that packets will stay in the netuork
no more than tens of seconds or minutes, at worst, we can reasonably

assume that ISN's will be unique.

In figure 4.2-8, uwe shou the history of sequence numbers used by a
particular connection. The ordinate shous sequence number and the
ahscissa shous time.
Ay e s -‘t (=

If a TCP were to crash at the point labeled "C" and uere to restart,
selecting the ISN at "A", there is a chance that packets emitted just
before pulnt "C" will still be in the network when new packets bearing
these” sequcnce numbers are emitted by the new incarnation of the
cmnne:tlun. The shaded area to the right of point "C" repreaents the
pa:ket I:fatlme in the netuwork. Point "B" represents the point of
“callision." .» 1+ mnieton

Toe avoid this, it is necessary to detect that a connection is not using
up sequence space fast enough and to jump the sequence numbers ahead to
avoid a situation like that shoun in the figure. Figure 4.2-9
illustrates the situation in more detail. The ISN curve is a step
function, changing by 2wxl& every second. The "Forbidden Zone" is one
maximum packet lifetime wide and follous the ISN+STEP curve. At point
"A" an attempt was made to transmit data which would include gequence
numbers fying above ISN+STEP. In this case, the TCP should send only
a8s much as is allouwed and then wait until the clock ticks to send the
rest., 1f we assume the proposed packet occupies sequence numbers [SEQ,
SEQ + L-11, where L is the length in octets, then the test for tupe "A"

collision is:
B < (ISN + STEP - SEQ) <= L (4.2-1)
Note that tests are modulo 24432 to account for circularity of the

sequence space. [f type "A" collision is about to occur, either delay
one clock step or only send as much as is "safe".

-38-

TICP (Version 2) Specification

JI l’/
| PACKET
| - PERSISTENCE
i > /
H 1 L e C Ill
[I i e a
41 ,/ ’_'_,_:—’ :. ZPOTENTIAL
= . /L coLLIsioN

; — :
i ~ISN
J’Hf//f h

SEGLIM NG

s

TIME ——= ,,tc- _E_L

The Meed for Resunchronization

Figure 4.2-8 SE 8

-39-

TCP (Version 2} Specification

e] T
ci NeA o
R SR e
‘ ceme *@-ﬁ"i'—'l
IEN + Q o N J
LIFE+STEP sy | N -
; oot STEF\'&F;ME
<A S
| e N
o L g SN h—p
; P SR /
@ SN MAXIMUN PACKET
2 Qi\ﬂ@@ N LIFETIME~__ |
E B N S .
W1 szouzncs NOMBERY IS O 7, t = !
= | HISTCRIES R AN L A '!
SN :
S| PACKET LiFeTiE | 50 B N 1 CLOCK STEP AT MAX:MIUi
W AT MAXINUN e N ¥ TRANSMISSION RATE
TRANSMISSION b fAN
RATE l '

#2
R

I ISN
¥ LESEZND --- ISN--LIFETIMNE-STER
=-={SN+-STEF

TIME ——=

Detecting the Forhidden Zone
Figure 4,2-3

The more complex case is that of type "B" collision - the ISN curve
catchas up with the actual sequence numbers in use. To accommodate for
the delays resunchronization might involve, it is essential to choose
to resynchronize in time to avoid disaster. Of course, any TCP about
to assign a sequcnce number which is in the forbidden zone must fall
silent until the forbidden zone is past. Presumably this will only
last a feu tens of seconds or minutes (depending on the maximum packet
lifetimel,

4p-

TCP (Version 2) Specificatian

We have chosen to create a "Panic Zone" miduay betueen the 1SN cucles.
The test for initiating resynchronization is thus whether SEQ lies in
the range [ISN, ISN + S/2 + B X (T + STEP)].

where S = 2432 (sequence number space) | fh¢ﬂ’ﬂiiﬁ}1
B = maximum bandwidth = 2wwl8 octets/sec ﬂ:;h~ﬁ“‘;?)) o 5
T = maximum packet |ifatime = 38 seconds vo o 2 3
STEP = clock tick = | second = 2uwl8 octets
So the test for initiating resynchronization is
® < (SEQ - ISN) <= 23l + 33 X 24x18)

The actual resynchronization is straightforuward. A special control
packet containing a resunchronize (RSN) flag (see section 4.3.2) is
sent which carries the current send sequence number as SEQ but the new
ISN in an option field. A receiver of RSN validates it on the basis of
the SEQ and ACK fields, processes it in sequence (that is, only after
it has processed packets occupying the immediately preceding sequence
spacel), changes its expected receive seguence number to the contents of
the RSN packet's ACK field, and acknonledges in the new sequence
number. Thus, RSN occupies tuo sequence numbers, the old (SEQ) and the
new (ISN). UWe illustrate this in figure 4.2-18.

I't should be recognized that when TCP A transmits the RSN, it may still
have unacknowledged packets in its retransmission gqueuve. In our
example (figure 4.2-1B), these might occupy seguence numbers 5B-399,
The receiving TCP won't send the ACK for the RSN until it has received
all preceding packets, but ACKS for these may be lest. A key
observation is that the ACK of 18,881 (line 3, figure 4.2-18) will
serve to acknouledge all the packets still on TCP A's retransmission
queve. To understand this, we need some terminology. A TCP maintains
certain status information about each caonnection it manages. In
particular, it keeps a send sequence number (SENDSEQ) telling it the
next number to assign an outgoing packet.

4] -

P P

e

a
¥

s

TCP (Version 2) Specification

TCP A TCP B
1. ESTABLISHED ESTABLISHED
2. ESTABLISHED --> <SEQ 58@><RSN 198@8><ACK 108> --» ESTABLISHED
3. ESTABLISHED <-- <SFQ 188><ACK 18081> --> ESTABLISHED

4. ESTABLISHED --»> <SEQ 18, BAl><ACK 188><DATA> --> ESTABLISHED
Resynchronization
Figure 4,2-18

It also keeps a "left-window edge” (LWEDCE) which tells it the last

oo S00uence number that has been acknowledged. A send "window" is

maintained telling the TCP which sequence numbers the receiving TCP has
given permission for the sender to transmit (SENDUINDOW) . A packet is
deemed acknouledged if, on receipt of a valid acknou ledgment packet
li.e. the ACK lies in the range [LWEDGE, LWEDGE + SENDWINDOW - 11), it
is the case that (SEQ + L - 1) lies outside the range [ACK, ACK +
SENDWINDOW - 11, where SEQ and L are the beginning sequence numher and
length of any packet im the retransmission gueue requiring

dcknou ledgment .

The ACK which returns from the RSN in figure 4.2-18 will typically
carry a window (for flow control) ranging from B to ZwxlB-1, and

LSWEDGE will become ISN + 1. Az is shoun in figure 4.2-11, all packets

on the retransmission gueue, including RSN must be acknowledged by
this. It can easily be shoun that the neu senduindou cannot overlap
the old retransmission gueue, and this guarantees everdything will be
ackrowl edged.

—§2-

TCP (Yersion Z) Specification

@ ,
9-.‘#“':1-'1\
10
Aow j’l
£:?Fl 1ﬂn=~&1521“a\J1ﬂ
.7,

. u-.gIJ.E--
e t’crn.nﬁ'ﬁﬁﬂm b

Sequence number space - 2
RSN Acknowledgement ACKs Retransmission Packets
Figure 4.2-11
4.2.5 Clesing a Connection
There are essentially three cases:
al The user initiates by telling the TCP to CLOSE the connection
b) The remote TCP initiates by sending a FIN control signal
c! Both users CLOSE simul taneous|ly i e L ol

Casze 1: Local user initiates the cloge

In this case, a FIN packet can be constructed and placed out the
outgoing packet queue. No further SENDs from the user will be
accepted by the TCP, and it enters the FIN-WAIT state. RECEIVES are
alloued in this state. All packets preceding and including FIN will
be retransmitted until acknouledged. MWhen the other TCP has both
acknouledged the FIMN and sent a FIN of its oun, the first TCP can

-3

TCP (Version 2) Specification

ACK this FIN and delete the connection (see figure 4.2-11. [t
should be noted that a TCP receiving a FIN will ACK but not send its
oun FIN until the user has CLOSED the connection also,

b |}

Case 2: TCP receives a FIN from the nmetuork

If an unsolicited FIN arrives from the network, the receiving TCP
can ACK it and tell the user that the connection is closing (see
Event Codes, section 2.4.3). The user should respond with a CLOSE,
upon which the TCP can send a FIN to the other TCP. The TCP then
waits until its oun FIN is acknouledged whereupon it deletes the
connection, If an ACK is not forthcoming, after a timeout the
connection is aborted and the user is told (see 2.64.3).

Case 3: both users close simul taneous|y

A simultaneous CLOSE by users at both ends of a connection causes
FIN packets to be exchanged. MWhen all packets preceding the FIN
have been processed and acknouledged, each TCP can ACK the FIN it

has received. Both will, upon receiving these ACKs, delete the
connection.

CLOSE is an operation meaning "I have no more data to send." The
notion of closing a full-duplex connection is subject to ambiguous
interpretation, of course, since it may not be obvious hou to treat the
receiving side of the connection. MWe have chosen to treat CLOSE in a
simplex fashion. The user who CLOSES may continue to RECEIVE until he
is told that the other side has CLOSED also. Thus, a program could
initiate several SENDs followed by a CLOSE, and then continue to
RECEIVE until signalled that a RECEIVE failed because the other side

has CLOSED. We aseume that the TCP il unilaterally inform a user,
cvon i f no RECEIVEs are outstanding, that the other side has closed, so
the user can terminate his side gracefully. A TCP will reliably

deliver all buffers SENT before the connection was CLOSED so a user
that expects no data in return need only wait to hear the connection
was CLOSED successfully to know that all his data was received at the
destination TCP.)

4.2.6 TCP Connection State Transitions

i

TCP (Yursion 21 Specificatior

The foregsing secticne on connection management were succincily

eprasanted pitn 2 pie zigte disgran, shoun in figure 4.2-1. The
figure only illustrate: state ges !shd actions uhich occur as a
result), but nsither addreszses crror conditions nor zctions which are

', 2 In thie section, more detlail is
ciion of the TOP {oc various events (user
cnaracterization of TUP processing of
Sotior to user commands ie refalively terse

not connected widih ztafe -
offercd wite rzop= ! i
commznd, Racket =-riwvalsh,

ontrol pockot

Cartaifsin; " e o e el e e e
"'T-E'CIfIE‘! 1.-""-""! s fair'y compact, but these inplemeniation issuss

iens £,3 - 4.5, Fer the sake of succinctness,
thia ceclion doliberaiz!y avoids wuch explanatory noterial which can ke
found in r seztione, Thus, this seciion 15 1ntendoed
mante 4g eferonce WhEh a8 lelorial, and roally ceduires exposure to
sections i

J W

uouseTel.

Furtheriiore, it should be kept ip mind that some conbeol information
pCcoupins seguznce number apace alung With data (see figure £.1-3).
Thic totter poinl arans that there ls 2 natural order in phizh to
Pprucess lie dale and ceairoel porlions of ar incolibieg packed sind Lhal
certiin conirols witl change the conneciion statle ErFW”E iater centrol
or data {i.e., thoss asa| vinhar sacyance punbers) s proceased.
An impliementation could : pdvantene of this seouvencing to keep frack
of which porticns of 2 pa-iet idate and conteell kad Eiroany boen
processed. dole fnal by assigning seguence numbers to seno contrel
Lite, it is possikla to vse the nornsl asknouledemant mecloanisms Lo
eclnouledss receipt of condro! infornation ard 4o filter oud
dupiicates.

|'| -

R LT T TSP J-l..".-.l. il e o By i e 1 e fam o
H ' -

R e saa - [T P e e - R T = v e [T
tn: t ihey Lrn first tested for propore EEQU"h?E rumbar lI.E.1 that their
contents lie in the range of the expezted "roceive windou" in the

=i |-|-|“- I!-" Lt [L
> e T -

sequrnce nabee spicel and ther thay {hey aro gueusd and processord B
grgireroe mymber grelas, Lle are, in this wvisoy, ig.--_.r‘ir"-’" for the momenrni

the problzn of reoaszesbling zezvients that unere ‘r gﬂcnted at gaiewaus
o Wwhich overlap other, already -eceived, packets.

e v clhos e to or ganids the descrijp
state, 1o how the description to figr"

tion according to the connection
3 f's.{ Y. lhen o pockel cauvses a

d| 5

=

ICF (VYersion 2) Specificaticn

stale change, but carries more dala o~ control which should he
processed, it may be Oppropriate to continus procecs ing in the neu
state, but processing of the packet's gcknouledgnent ficld or secquance
nunmbicr f'rt-h.i should nol be reprated (lect o packet which lookesd valid
befoirec appear to be an old dusiicate er have 3 bad acknoul edgment field
as an ar tufE:L;t of the state change).

<TLET 10 Soqlenie haceels snd o datormine when

A TOP wust typically maintain certain state infermation about ensch
3
on 4,3 for more detaill which are used in the

required. For reference, we prezent a list of
i
for each state (also see figure 4.2-12),

| o SERND-WINDDW > |
/flfffff/
' *=—cont, buk o -p”"‘.e:‘-""'"‘-‘k‘: wasenlk / 'j o
ot sl gn etcin T e = LN e " ”(.-"r.-:' ({Z
L Lerrsoguence SEMD- s.e;:-uemr:
< = MAOKIMLLA WIN Do 1- I
e e BECEWE = WINDOW |
_gaf} &

~ RELEWE-SEQUENLE

Sequence Nuuber Managsment

Figure 4,2-1

B

TCP (Version 2) Specification

Glossary of terms

ACK - A control bit lacknouwledge) occupying no sequence space, which
indicates that the acknouledgment field of the incoming packet
indicates the next sequence number the sender of the packet is
expecting to receive,

ARO - A control bit {acknuuredge requested) occupying one sequence
number, indicating that the packet must be acknouledged. No other
semantics are associated with this control.

EOL - A control bit (End of Letter] DCcCupding no sequence spoce,
indicating that this packet ends a logical letter with the last data
octet in the packet,

FIN - A control bit (finis) occupying one sequence number, which
indicates that the sender uill send no more data or control
occupying sequence space, S

{ P I
INT = A contraol bit ,Hr—the—necomimg—packet occupying one sequence
number, used to indicate that the receiving user should he
signalled or interrupted {out of band signall,

LEFT-SEQUEMCE - This is the next sequence number to be acknowledged
by the remote TCP and is sometimes referred to as the left edge of
the transmit "window."

PKT-ACKNOWLEDGMENT - The acknouledgment sequence number in the
arriving packet.

PKT-LENGTH - The amount of sequence number space occupied by a
packet, including any controls which DCCUPY Sequence space.

RECEIVE-SEQUENCE - This is the next seguence number the TCP is
expecting to receive.

RECEIVE-WINDOU - This represents the sequence numbers the local TCP

is willing to receive. Thus, the local TCP considers that packets
over lapping the range RECEIVE-SEOUENCE to RECE|VE-SEQUENCE +

57 -

TCP (Version 2) Specification

RECEIVE-LINDOW - 1 carry acceptable data or control. Packets
containing sequence numbers entirely outside of this range are
considered duplicates and discarded. This topic is discussed in
detail in section 4.5 on uindou allocation palicies.

RSN = A control bit (resynchronize) occupying one sequence number,
indicating that the packet contains a neW sequence number in an
option field. This control bit is unique in that it has two
sequence numbers, the last of the old sequence numbers and the first
of the neu ones. This choice uas made so that the acknow!|edgment
using the new sequence numbers would serve to remove the packet
containing the RSN from the retransmission queue.

RST - A control bit (reset) occupying no sequence space, indicating
that the receiver should delete the connection Without further
interaction. The receiver can determine, based on the sequence
number and acknouledgment fields of the incoming packet, whether it
should honor the reset command or ignore it. In no case does a
packet containing RST give rise to a RST packet.

SEND-SEQUENCE - This is the next sequence number the TCP will use an
the conmection. It is initially selected from an initial sequence
number curve (ISN, see section 4.2,1) and is incremented for each
octet of data or control transmitted. It may be " jumped foruard"
through resynchronization (section &.2.4).

SEND-WINDOW - This represents the sequence numbers which the remote
TCP is willing to receive. The range of sequence numbers which may
be emitted by a TCP lies between SEND-SEQUENCE and LEFT-SEQUENCE +
SEND-WINDOW - 1.

SYN - A control bit in the incoming packet, occupying one sequence
number, used to indicate at the initiation of a connection, where
the sequence nunbering will start.

Certain error responses shoun below are generic. User commands
referencing connections do not exist receive "connection not open"
(EP3) and references to connmections not accessible to the caller
receive "connection illegal for this process” (EP1). We have not

—48-

TCP (Version 2) Specification

repeated these generic responses in each description of action
performed for each connection state, Overt attempts to SEND or
INTERRUPT on a connection with unspecified foreign socket results in
a "foreign socket unspecified" (ES) response.

CLOSED etate (i.e. connection does not exist)

User Commands

il

OPEN

Create a new transmission control block TCB to hold connection
state information. Fill in local socket identifier, foreign
socket (if present. The connection is passively "listening"

if the foreign socket is unspecified), user timeout
information. Some implementations may issue SYN packets if
the foreign socket is fully specified. In this case, an
initial seguence number (ISN} is selected and a SYN packet
formed and sent. The LEFT-SEQUENCE is set to ISN, the
SEND-SEQUENCE to ISN + 1, and SYN-SENT state is entered.

[f the caller does not have access to the local socket
specified, return "connection illegal for this process."

(EP1}). If there is no room to create a ned connection, return
‘insufficient resources” {4)

SEND, INTERRUPT, CLOSE, ABORT, RECEIYE, STATUS
Error return "Connection not open" (EP3).

1f the user should no have access to such a conmnection,
"connection, illegal for this process” (EP1l) may be returned.

Incoming Packets,

All incoming packets are discarded and, except for incoming RST
packets which should be ignored, an RST is created with a
sequence number (PKT-SEQUENCE) equal to the acknouledgment field
(PKT-ACKNOWLEDGHENT) of the incoming packet (if it has one;

=49

TCP (Yersion 2) Specification

otheruise PKT-SEQUENCE may be zero or, perhaps, [ISNl. The
acknouledgment field of the RST should be set to the sum of the
incoming PKT-SEQUENCE and PKT-LENGTH. The RST and ACK control
bits for the bound packet should be set (see figure 4.2-B).

OPEN state

User Commands

1.

2.

3.

OFEN
Return "already OPEN" (EPB)
SEND or INTERRUPT

Select an ISN, send a SYN packet, set LEFT-SEOUENCE to 1SN and
SEMD-SEQUENCE to ISN + 1. Enter SYN-SEND state. Data
assaciated uith SEND may be sent with SYN packet or gueued for
transmission after entering ESTABLISHED state. INTERRUPT can
be sent as a combination SYN, INT packet (see figure 4.1-3 and
section 4.3.2). [f there is no room, respond with
“insufficient resources" (4),

RECEIVE

Queue reguest, if there is space or respond with "insufficient
resources” (4]

CLOSE

Delete TCB, return "ok" (B). Any outstanding RECEIVES should
be returned with "closing” responses P12,

ABORT

Delete TCB, return "ok" (B); any outstanding RECEIVES should
be returned with "connection reset" (P14) responses.

STATUS

-58-

TCP (Version 2} Specification

Return state = OFEN .

Incoming Packets

1=

SYN-SENT

ACK -

Any acknouledgement is bad if it arrives on a connection still
in the OPEN state. A reset (RST) packet should he formed for
any arriving ACK-bearing Packet, except another RST. The RAST
should be formatted as follous:

<5SEQ PKT-ACKNOWLEOGHENT > <RST><ACK PKT-SEQUENCE + PKT-LENGTH>

Thus the RST will acknouledge any text or eontrol or control
in the offending packet.

S3YM

RECE1VE-SEQUENCE should be set to PKT-SEQUENCE + 1 and any
other control or text should be Queued for processing later,
ISN should be selected and a SYN packet sent of the form:

<SEQ 1SN-<SYN><ACK RECEIVE-SEQUENCE >

SEND-SEQUENCE should be set to ISN + 1 and LEFT-SEQUENCE to
ISN. The connection state should be changed to SYN-RECEIVED.
Note that any other incoming control (combined with SYN) will
be processed in the SYN-RECEIVED state. Processing of SYN and
ACK should not be duplicated.

Other text or control

Any other control or text-hearing packet (not containing SYN)
will have an ACK and thus uill be discarded by the ACK
precessing. An inceming RST packel could not be valid, since
it could not have been sent in response to anything sent by

this incarnation of the connectinn.

state

=5]-

TCP (Version 2) Specification

Usar Commands

1.

B.

OPEN
Return "already OPEN" (EPE)
SEND or INTERRUPT

Queue for processing after the connection is ESTABLISHED or
packetize, startin with the current SEND-SEQUENCE number.
Tupical ly, nothing can be sent yat, anyway, because the send
window has not yet been sat by the other side. [f mo space,
return "insufficient resgurces" (4),

RECEIVE

Queue for later processing unless there is no room., in ukich
case return "insufficient resources" (4],

CLOSE

Delete the TCB and return "closing” (P12} responses to any
queued SENDs, RECEIVES, or INTERRUPTS.

ABDRT

Delete the TCB and return "reset" (Pl4) responses to any
queued SENDS, RECEIVES, or INTERRUPTS.

STATUS

Return state = SYN-SENT; SENT-SEQUENCE, RECEIVE-WINDOW

Incoming packets

1.

ACK

I'f LEFT-SEQUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE then
the ACK is acceptable. LEFT-SEQUENCE should be advanced to

SESE

TCP {Version 2) Specification

equal PKT-ACKNOWLEDGHENT, and any packet(s) on the

retransmission queue uhich are thereby acknowledged should be
removed.

If the packet acknouledgment is not acceptable, a RST packet
should be formed (except when the offending packet is also a
RST} which carries the PKT-ACKNOWLEDGMENT as a sequence

number, and acknouledges all text and control of the offending
packet,

SYN

RECEIVE-SEQUENCE should be set to PKT-SEQUENCE + 1 and any
packet text or control queued for |ater processing. [f the
packet has an ACK, change the connmection state to ESTABLISHED,
otheruise enter SYN-RECEIVED. In any case, form an ACK
packet:

<SEQ SEND-SEQUENCE > <ACK RECEIVE-SEQUENCE> and send it.

- Other text or control.

Incoming packets uith other control or text combined with SYN
Hill be processed in SYN-RECEIVED or ESTABLISHED state.
Arriving packets which do not contain SYN are either old
duplicates or out-of-order arrivals, Since these must contain
ACK fields, they will have been discarded by ear|ier ACK
processing. Note that a valid RST could not be received in

SYN-SENT state since it could not have been sent in response
to a SYN.

« User Timeout,

If the user timeout expires on a packet in the retransmission
queue, abort the connection, notifying the user
"retransmission timeout, connmection aborted" {EF3), and
flushing all queues, returning RECEIVES, SENDS or INTERRUPTS
uith the same error (EP3). Delete the TCB.

-53-

TCP {Yersion 2) Specification

SYN-RECEIVED STATE

User Commands

1.

S.

OPEN
Return "already OPEN" (EPE)

SEND or INTERRUPT
Queue for later processing after entering ESTABLISHED state,
or packetize and queue for output. [f no space to gueue,
respond dith "insufficient resources" (&)

RECEIVE
Oueue for processing after entering ESTABLISHED state. |[f
there is no room to queue this request, respond ulth
“insufficient resources" (&).

CLOSE

Queue for praocessing after entering ESTABLISHED state or
packetize and send FIN packet. [f the latter, enter FIN-WAIT
state.

ABORT

Delete TCB, send a RST of the form:

<SEQ SEND-SEQUENCE><RST»<ACK RECE]VE-SEQUENCE=

and return any unprocessed SENOs, INTERRUPTs, or RECEIVEs with
"reset" code (Pl4).

STATUS

Return state= SYN-RECEIVED, LEFT-SEQUENCE, SEND-SEQUENCE,
SEND-WINDOW, RECEIVE-SEQUENCE, RECEIVE-WINDOW, and other

B

TCP (Yersion 2) Specification

desired statistics number of (SEND, RECEIVE buffers gueued)},
packets queued for reassembly, for retransmission, etc.

Incoming Packets
1. Check PKT-SEQUENCE

I'f RECEIYE-SEQUENCE - OUT-SEQUENCE +max (B, PKT-LENGTH -1)
<RECEIVE-SEQUENCE + RECEIVE-WINDOW then the packet sequence is
acceptable. [f not, form a reset (RST) packet;

<SEQ PKT-ACKNOWLEDGMENT><RST><ACK PKT-SEQUENCE +
TEXT-LENGTH>

If the incaming packet is RST or has no ACK, discard it, and
do not send RST formed above. Note that the test above
guarantees that the |ast sequence number used by the packet
lies in the receive-window. Insisting that PKT-SEQUENCE
li.e., the first sequence number occupied by the packet) lie .
in the RECEIVE-LINDOW could lead to deadlock in the case of
alternate gateway routing and different fragmentation. The
special "MAX" operation makes certain that empty ACK packets
whose length is B, will be accepted., [f the RECEIVE-WINDOW is
Ztro, no packets Will be aceeptable, but special allouwance
should be made to accept valid ACUS.

2. ACK

1 f LEFT-SEQUENCE <PKT-ACKNOULEDGHENT <= SEND-SEQUENCE then set
LEFT-SEQUENCE = PKT-ACKNOWLEDGMENT, remove any acknouledged
packets from the retransmission queue, and enter ESTABL [SHED
state,

1 the packet acknouledgment is not acceptable, form a reset
packet, as for the bad sequence case above and send it, unless
the incoming packet is an RST, in which case, it should be
tliscarded,

3. "RST

-B5_

TCP (Version 2) Specification

I'f the packet has passed sequence and acknouwledgment tests, it
is valid., Return this connection to OPEN state. The user
need not be informed. All packets on the retransmission gueue
should be removed, All packetized buffers must be assigned
NEu sequence numbers, so they should be reqgueued for
re-packetizing.

Other text or control

If there is other control or text in the packet, it can be
processed when the connection enters the ESTABLISHED state.

User Timeout

[f the user timeout expires aon any packet in the
retransmission queue, flush al| gueues, return outstanding
SENDs, INTERRUPTs or RECEIVEs with "user timeout, connmection
aborted" (EP3S), and delete the TCB.

ESTABLISHED state

User Commands

I

OFEN .
Respond with "already OPEN" (EPE)

SEND or [NTERRUPT
Packetize the buffer, send or gqueue it for output. [f there
is insufficient space to remember this buffer, simply respond
uith"insufficient resources" (4).

RECEIVE
Reassemble gueued incoming segments into receive buffer, and
return to user. Mark "end of letter” (EOL) if this is the

case. |f insufficient incoming segments are queued to satisfy
the request, gueue the request. [f there is no queue space to

SR

TCP (Yersion 2) Specification

remember the RECEIVE, respond with "insufficient resources"
(4)

4. CLOSE

Queue this until all preceding SENDs or INTERRUPTs have been
packetized, then form a FIN packet and send it. In any case,
enter FIN-UAIT state.

5. ABORT
Delete TCB and send a reset packet:
<5SEQ SEND-SEQUENCE><RST><ACK RECEIVE-SEQUENCE>

All queued SENDs, INTERRUPTs, and RECEIVEs should be given
“reset" responses (Pl4); all packets gueued for transmission
(except for the RST formed above) or retransmission should be
f lushed.

6. STATUS

Return state = ESTABLISHED; SEND SEQUENCE, LEFT-SEQOUENCE,
SEND-WINDOW, RECEIVE-SEQUENCE, RECEIVE-WINDOW, and other
statistice, as desired.

Incoming Packets

1. Check PKT-SEQUENCE

All packets are generally processed in sequence. Initial
tests on arrival are used to discard old duplicates, but
further processing is done in PKT-SEQUENCE order. If a
packet's contents straddle the boundary betuween old and neu,
only the neu parts should be processed.

1f RECEIVE-SEQUENCE <= PKT-SEQUENCE + max (PKT-LENGTH - 1, 8
<RECEIYE-SEQUENCE + RECEIVE-WINDOW then packet is acceptable.

Sy

TCP (Version 2) Specification

Otheruwise if PKT-LENGTH is non-zero, an empty acknouledgment
packet should be sent:

<5E0 SEMD-SEQUENCE><ACK RECEIVE-SEQUENCE>
In any case, unacceptable packets should be discarded.
ACK

I f LEFT-SEQUENCE <PKT-ACKNOMLEDGHMENT <= SEND-SEQUENCE then set
LEFT-5SEQUENCE = PKT-ACKNOWLEDGMENT. Any packets an the
retransmission queue which are thereby entirely acknouledged
ara removed. Users should receive positive acknouledgments
for buffers which have heen SENT and fully acknowledged (i.e,
SEND buffer should be returned with "OK" (B) response). 1f
the ACK is a duplicate, it can be ignored.

RST

All RECEIVEs, SENDs, and INTERRUPTs receive "reset" (Pl4)
responses. All packet queues are flushed. The TCB is
deleted. User also receives an unsolicited general "reset"
signal (P14},

SYN

Ignore the SYN. A packet carrying a SYN could not have passed
through the sequence check unless it had control or text lying
beyond the SYN which was acceptable. To prevent duplicate
processing, such packets could be "marked” so that all
duplicate control or text is removed before they exit
sequence-number check. Other marking strategies could be
employed to achieve the same effect.

INT

Signal user that remote side has "interrupted" (Pll) and
advance RECEIVE-SEQUENCE to account for INT. Format and send

[

TCP (Yersion 2) Specification

an acknodledgement for the INT, or piggy back the ACK on
return traffic.

ARD

Format and send an ACK packet after advancing RECEIVE-SEQUENCE
to account for ARO. Alternatively, simply set a flag to send
an ACK (possibly by piggy-backing on return packets) at the
earliest opportunity.

RSN

Since packet contents are being processed in sequence, the
sequence number of the RSN should now equal RECEIVE-SEQUENCE,
RECEIVE-SEQUENCE can be replaced by the RSN option-field
containing the new sequence rumber. An ACK packet should be
returned or a flag set to send an ACK at the earliest

oppor tuni ty,

Packet text

Once in the ESTABLISHED state, it is posaible to deliver
packet text to user RECEIVE buffers. GSome preliminary packet
reassembly may be required to form valid sagments from
fragments created at a gateuway. Text from segments can be
moved into buffers until either the buffer is full or the
segment is empty. If the segment empties and carries an EOL
flag, then the user is informed, when the buffer js returned,
that an EOL has been received.

FIN

An ACK packet should be sent, acknouledging the FIN., The uszer
should be signalled "connection closing" [P1Z2) and similar
responses should be returned for any outstanding RECEIVEs
which cannot be satisfied. Connection state should be changed
to CLOSE-WAIT.

18. User Timeout

-59-

FIN-LAIT

TCF (Version 2) Specification

1f the user timeout expires on a packet in the retransmission
queue, flush all queues, return "user timeocut, connection
aborted" (EP3) for all outstanding SENDs, INTERRUPTs, ancd
RECEIVEs, and delete the TCB, The user should receive an
unsolicited message of the same form (EP3).

User-Commands

1.

OFEN
Return "already OPEN" (EPG)

SEND or [NTERRUPT
Return “connection closing” (EP12) and do not service request.
RECE I VE
Reassemble and return a letter, or as much as will fit, in the
user buffer. QOueue the request if it cannot be serviced
immediately,

CLOSE

Strictly speaking, this is an error and should receive a
"connection closing" (EP12) response. An "ok" (B) response
would be acceptable, too, as long as a second FIN is not
enitted.

ABORT

A reset packet [AST) should be formed and sent:

<SEQ SEND-SEQUENCE><RST><ACK RECEIVYE-SEQUENCE>

Outstanding SENDs, INTERRUPTS, RECEIVEs, CLOSEs, and/or

-68-

TCP (Yersion 2) Specification

packets queued for retransmission, or packetizing, should be
flushed, with appropriate "connection reset" (P12).

B. STATUS

Respond uith state = FIN-WAIT, SEND-SECQUEMCE, LEFT-SEQUENCE,
SEND WINDOW, RECE[VE-SEQUEMCE, RECEIVE WINDOW, and other
statistical information, as desired.

Incoming packets
1. Check PKT-SENUENCE

I f RECE[VE-SEQUENCE <= PKT-SEOUENCE + MAX (PKT-LENGTH - 1,B) <
RECEIVE-SEQUENCE + RECEIVE-WINDOW then packet sequence is
acceptable. Otherwise, if PKT-LENGTH is non-zero, an ACK
packet should be sent:

<5EQ SEND-SEQUENCE><ACK RECEIVE-SEQUENCE>

In any case, an unacceptable packet should be discarded.

2. ACK

I'f LEFT-SEUUENCE < PKT-ACKNOWLEDGMENT <= SEND-SEQUENCE, then
LEFT-SEQUENCE should be advanced appropriately and any
acknouledged packets deleted from the retrarmsnission gueue,
SEMDs or INTERRUPTs which are thereby completed can also be
acknouledged to the user. ACK's outside of the SENO-WINDOW

can be ignored. 11 the retrancmission gueue is emply, the
user’s CLOSE can be acknowledged ("OK" (B)) and the TCB
deleted.

El RST

All RECEIVEs, SENDs, and INTERRUPTs still outstanding should
receive "reset" (Pl4) responses. All packet queues should be

ol

TCP (Yersion 2) Specification

flushed and the connection TCB deleted. User should also
receive an unsolicited general "connection reset" (Pl4)
signal.

SYN

This case should not occur, since a duplicate of the SYN uhich
started the current incarmation will have been filtered in the
PKT-SEQUENCE processing. Othker SYN's could not have passecd
the PKT-SEQUENCE check at all (see SYN processing for
ESTABLISHED state).

INT

Advance RECEIYE-SEOUENCE by one and signal the user that the
remote side has "interrupted" (P1l). An ACK packet should be
sent in return, or a flag set to send an ACK at the earliest
possible time.

ARQ

RECEIVE-SEQUENCE should be advanced by one and an ACK packet
sent in return, or a flag set to accomplish this as soon as
possible,

Packet Text

I'f there are outstanding RECEIVEs, they should be satisfied,
if possible, with the text of this packet, remaining text
should be queued for further processing. [f a RECEIVE is
satisfied, the user should be notified, with "end-of-letter"
{EOL} signal, if appropriate,

RSN

RECEIVE-SEQUENCE should be updated to 1 + NEW-SEQUENCE (
carried in the RSN option field of this packet). An ACK
packet should be prepared, acknowledging the new sequence
number

-52-

g.

1a.

TCP (Yersion 2) Specification

<SEQ SEND-SEQUENCE><ACK RECEIVE-SEQUENCES
FIN

The FIN should be acknouledged. Return any remaining RECEIVEs
with "connection closing” (P12) and advise user that

connection is closing with a general signal (P12). 1f the
retransmission queue is not empty, then enter CLOSING state,
otheruise, delete the TCRB,

User Timeout

I'f the user timesout expires on a packet in the retransmission
tjueue, flush all queues, return "user timeout, cornection
aborted" messages for all outstanding SENDs, RECEIVEs, CLOSES
or INTERRUPTS, send an unsclicited general message of the same
form to the user, and delete the TCB.

CLOSE-WAIT

User Commands

1.

2.

OFEN
Return “already OPEN" error (EPB)

SEND or INTERRUPT

Packetize any text to be sent and queue for output. I1f there
is insufficient space to remember the SEND or INTERRUPT,
return "insufficient resouces” (4)

RECEIVE

Since the remote side has already sent FIN, RECEIVEs must be
satisfied by text already reassembled, but not delivered to
the user. [f no reassembled packet text is awaiting delivery,
the RECEIVE should get a "connection closing" (P12) responsa.
Otheruise, any remaining text can be used to satiefy the

i e

4,

EI

.

TCP (Version 2} Specification

RECEIVE. In implementations which do not acknouledge packets
until they have been delivered into user bhuffers, the FIN
packet which led to the CLOSE-HAIT state will not be processed

until all preceding packet text has been delivered into user
buffers. Consequently, for such an inplementation, all
RECEIVEs in CLOSE-WAIT state will receive the "connection
closing” (P12) response.

CLOSE

Uueue this reqguest until all preceding SENDs or INTERRUFTs
have been packetized, then send a FIN packet, enter CLOSING
state.

ABORT

Flush any pending SENDs, RECEIVEs and INTERRUPTs, returning
"conmnection reset" (Pl4) responses for them. Form and send a
RST packet:

<5SEQD SEND-SEQUENCE><RST><ACK RECEIVE-SEQUENCE=>
Flush all packet queues and delete the TCE.
STATUS

Heturn state = CLOSE-MAIT, all other TCB values as for
ESTABLISHED case.

Incoming Packets

L

Check PKT-SEQUENCE

I f RECEIVE-SEQUENCE <= PKT-SEQUENCE + MAX (PKT-LENGTH - 1, @)
< RECEIVE-SEQUEMCE + RECEIVE-WINDOW then the packet sequence
is acceptable. Otheruwise, if PKT-LENGTH is non-zero, an ACK
should be sent:

<5SEQ SEND-SEQUENCE=><ACK RECEIVE-SEOUENCE=

B -

7.

TCP {Version 2) Specification

Unaceceptable packets should be discarded. Others should be
processed in sequence number order.

ACK

1f LEFT-SEQUENCE < PKT-ACKNOWLEDGHENT <= SEND-SEQUENCE, then
LEFT-SEQUENCE should be advanced appropriately and any
acknouledged packets removed from the retransmission queue.
Completed SENDs or INTERRUPTs should be acknouledged to the
user ("0K" (B) returns). ACK's which are outside the receive
windou can be ignored.

HST

All RECEIVEs, SENDs, and INTERRUPTs still outstanding should
receive "reset" (Pl4) responses. Facket fueues should be
flushed and the TCB deleted. The user should also received an
unsolicited general "connection reset" signal (P14},

SYN
This case should not occur, since a duplicate of the S5YN which
started the current connection incarnation will have bean
filered in the PKT-SEQUENCE processing. Other SYN's will have
been rejected by this test as well (see SYN processing for
ESTABLISHED state).

INT

This should not occur, since a FIN has been received from the
remote side. Ignore the INT.

ARQ

This should not occur, since a FIN has heen received from the
remote side. [gnore the ARO.

Packet text

=E5-

TCP {Version 2) Specification

This should not occur, since a FIN has been received from the
remote side. Ignore the packet text.

8' HSN

This should not occur, since a FIN has been received from the
remote side. Ignore the RSN.

3. FIN

This should not occur, since a FIN has already been received
from the remote side. Ignore the FIN.

18. User Timeaut

I f the user timeout expires on a packet in the retransmission
gueue, flush all gueues, return “"user timeout, connection
abor ted" (EP3) for any outstanding SEMDs, RECEIVEs or
INTERRUPTs, send an unsolicited general message of the same
form to the user and delete the TCB.

CLOSING
User Commands
1. OPEN
Respond with "already OPEN" (EPB)
2. SEND, INTERRUPT
Respond with "connection closing" (EP12)

3. RECEIVYE

Respond with "connection closing" (EP12)

4. CLOSE

TCP (Version 2) Specification

Respond with "connection closing” (EPLZ}
5. ABORT

Hespond uith "OK" (B) and delete the TCB, flush any remaining
packet queues. [f a CLOSE command is still pending, respond
"connection reset" (Pl4).

6. STATUS
Return State = CLOSING along with other TCP parameters,
Incoming packets
1. Check PKT-SEQUENCE

I f RECEIVE-SEQUENCE <= PKT-SEQUENCE + MHAX(PKT-LENGTH - 1.8) <
RECEIVE-SEQUENCE + RECEIVE-WINDOW then packet sequence is
acceptable. Otherwise, if PKT-LENGTH is non-zero, an ACK
packet should be formed and sent:

<SEQ SEND-SEQUENCE><ACK RECE [VE-SEQUENCE >
In any case, an unacceptable packet should be discarded.
2. ACK

I f LEFT-SEQUENCE < PKT-ACKNOWLEOGMENT <= SEND-SEQUENCE, then
LEFT-SEQUENCE should be advanced and any acknowledged packets
deleted from the retransmission queue. SENOs or INTERRUPTs
which are thereby completed can also be acknouledged to the
user. ACK's outside of the SEND-WINDOW can be ignored.

3! F?ST
Any outstanding RECEIVEs, SEND, and INTERRUPT= should receive
‘reset"” responses (P14). All packet gqueues should be flushed

and the TCB deleted. Users should also receive an unsolicited
general "connection reset" (Pl4) signal.

57 -

TCP (Yersion 2} Specification

4, Packet text or contral

No other control or text should be sent by the remote side, so
packets containing non-zero PKT-LENGTH should be ignorecd.

5. User Timeout

[the user timeout expires on a packet in the retransmission
queue, flush all gueues, return "user timeout, connection
aborted" (EP3J) responses for all outstanding SENDs,
INTERRUPTs, RECEIVEs, or CLOSEs, send an unsclicited message
of the same form (EPS) to the user and delete the TCB.

4,3 TCP Data Structures
4.3.1 Introduction

Our basic vieu of internetuworking is that all internetuwork packets (TCP
and otherwise)l have a basic internet header consisting of
cource/destination address, data and header length fields, and format
indicator. The TCP header follows the internet header, supplying
information specific to the TCP protocol. This division allows for the

existence of internet protocols other than TCP, and for experimentation
with TCP variations.

4,.3.2 Internetuork Packet Format

In this section, we offer a terse descriptive summary of the contents
of the internetuwork and TCP header (see also figure 4.3-1).

Destination Network ldermtifier: 8 bits

Decimal Octal Netuork

g 8 Reserved

1 1 BBN Packet Radio MNetuwork

2 2 5F Bay Area Packet Radio Netuork
3 3 BBN RCC Netuork

-G8-

TCP (Yersion 2) Specification

& g Atlantic-Satellite Network

5 5 Washington, 0.C. Packet Radio Netuork
B-3 E-9 Not assigned

18 12 ARPANET

11 13 University College London Netuwork
12 14 CYCLADES

13 15 Mational Physical Laboratory

14 1E TELENET

15 17 British Post Office EPSS

16 28 DATARPAC

17 21 TRANSPAC

18 22 LCS Network

13 23 TYMNET

2B-254 24=-376 Unassigned

255 377 Reserved

Destination Host Identifier: 24 bits

Usually synonumous with a TCP, but more than one TCP may reside at a
host.

Source Network ldentifier: 8 bits
Source Host ldentifier: 24 bits
Packat length: 1B bits

Measured in 8 bit octats, this length accounts for all octets in the
packet including contral bits, but not in:ludinghheader bits.

Header length: 8§ hits po, b

Measured in 8 bit octets, this length accounts for all aoctts in the
header including source/destination addresses, packet length and
format fields, etc. Options are included in the header length, but
follow the fixed fields of the header. The format field can be used
to identify the header tuype and implicit fixed field length. For

Seqt

TCP (Version 2) Specification

TCP, the standard header (without options) is 34 (decimal) octets

lon

[+ 1%

Format: & bits

Tup

[=3-H

B: Rau internet packet

1:

TCP
21 Secure TCP

3=-14: Not assigned
15: Internet debugger (XNET)

Note: all

type codes above are decimal.

The fields below are TCP specific,

TCP version number: & bits

Sequence number: 32 hits

Control Flags: 16 bits (from left to right}:

Window: 16 bits
bit B: SYN;
bit 1: ACK :
bit 2: FIN:
bit 3: ASN:
Bit &4: EOQS;
bit 5 EOL:
Lit Bt INT:
bit 7:
bit 8: BOS:
bit 9
bit 18; AR
bit 11: RST:
bits 12-15;

Reserved: & bits

Request to synchronize sending sequence numbers.,
the acknouledgment field contains an ACK
Sender will not send any more data
Sender is resynchronizing
End of Segment; end-end checksum present
End of Letter
Sender is interrupting
unused
Beginning of segment
unused
Acknouledgment requested
Reset the connection packet.

unused

Uestination Port ldentifier: 24 bits

-7B-

TCP (Version 2) Specification

Reserved: & bits

Source Port ldentifier: 24 hits

Acknouledgment: 32 bits

I'f the ACK control bit is set this field contains the value of the
next seguence number the sender of the packet is expecting to

receive. | If the RSN control bit is cet, this field contains the

= value of the new next sequence number the sender will use. T

f

checksum: 1B bits

The checksum field is the 16 bit one's complement of the one's
complemcnt sum of all words in the header and text, excluding those
words which represent unchecksummed options (see belou). If a
packet contains an odd number of header and text butes to be
checksummed, the last byte is padded with zero to form a 16 bit word
for checksum purposes. The pad is not transmitted as part of the
packet, '

Options (a multiple of & bits in lengthl: B8n bits

Follouing the checksum, but preceding the data, there may be options in
the header. Options occupy the space betucen the end of the stanmdard
TCP header (34 octets) and the end of the header as accounted for in
the header length field. All options have the same basic format:

8 bits: Option length in octets lincluding tuo octets of length and
kind information) :

& bits: Option kind
C: 1 hbit

1f set, this option is not included in the checksum
caleulation.

P: 1 bit

e

N

'::I"‘:_

TCP (Version Z2) Specification

If set, this option is protocol specific li.e. option is
interpreted based on format and protocol version specifiecd in
those internet packet header fields.

Option identifier: B bits

There are two special cases for options. The first is an option
whose length field is zero. This marks the end of the option
list. Only one octet is associated with this option, the length
octet itself, The second is an option whose length field is one.
This option serves as padding and is also one octet long. This
option does not terminate the option list. MNote that the list of
options may be shorter than the header length field might imply.
No guarantees concerning the content of the header beyond the
end-of-option mark are made,

Currently defined options loctal numbering) include:

Code Length Meaning

BHX -—= checksummed and protocol independent
BB -—- reserve:

IXX -—- checksummed, protocol dependent (TCP)
168 —_— reserved

181 4 Packet label-sequence number for

debugging purposes.

182 & Secure Dpen - used by TCP's
communicating with BCR security system

183 2 Secure Close-used by TCP's
communicating with BCR security suystem

B e

ZKK

288

284

285
3AN

284

variable

variable

TCP (Version 2) Specification

Not checksummed and Protocol
independent

reserved

Internetuork timestamp field used to
accumulate timestamping information
during internet transit.

satellite timestamp - (as above)

Not checksummed and Protocol Dependent

Internal TCP timestamp for
diagnostics.

_73-

TCP (Version 2) Specification

& 8 8 8

L T = —- — e
T] Desm DESTIUAYILN
MET Hogy

[SoURLE Sounce
NET HoaT

HEaper

F°n. NER-

’NTERHET

Henozp,
LENGTH

5 I-
BT el T L —

DATA
LENGTH

B
q

EADER ———— i

SEGQUENCE Numeter

ConTrROL
FLRGS
% DESTINATION

/ PoRrT
g’% SOURCE
i"r.“f'&f-;'&ﬁ_,__ PORT
ACKNOWLEDGMENT

WINDDW

TCP H

CHECKS UM, OPTVON ...

SPTIONS ...

[—
H

DATA

’%WW\/’\NV\N
AT

TCP Header Format

Figure 4,3-1

4.3.3 Transmission Control Block

I't is highly likely that any implementation will include shared data

~JG-

TCP (Version 2) Specificatian

Structures among parts of the TCP and some asynchronous means of
signalling users when letters have been delivered,

One typical data structure is the Transmission Contral Block (TCE)
uhich is created and maintained during the lifetime of a given
connection. The TCB contains the following information (field sizes and
content are notional only and may vary from one implementation to
another):

Local connection name: 1B bits

Local socket: B4 hits

Foreign socket: B4 bits

Receive windouw size in octets: 16 bits

Receive left windou edge (next sequence number expected): 32 bits

Send window size in octets: 16 bits

Send left uindow edge (earliest unacknouledged octet): 32 bits

Next packet sequence number to send: 32 bits

Last seguence number used to update send Wwindow {make sure that only
the most recent window information is used: 32 bits

Connection state: 4 hits
See figure 4.2-1 for basic state diagram.

CLOSED (B), OPEN (1), SYN-SENT (2), SYM-RECEIVED {31, ESTABLISHED
{4}, CLOSE-WAIT (5), FIN-WAIT (), CLOSING (7).

Foreign connection specification (U,U.N,U.T,U.P}: & bits

U.N is set if the foreign network was not specified in the OPEN
command. U.T is set if the foreign TCP was not specified in the

SEe

TCP (Version) Specification

OFEN command. U.P is set if the foreian Port was not specifier
in the OPEN command. U is set if any of U.N, U.T, or U.FP are
set. U,T implies U.P and U.N implies both U.T and U.P {see

-

section Z.28). U.N, U.T, and U.P are used to remember the state
of unspecifity of the foreign socket at the initial OPEN so that
a RST (reset) will return the foreign socket to its proper state.
U is reset (i.e. made false) when a SYN is received, but may he
set again on receipt of RST, depending upon U.N, U.T. or U.P.
Once in the ESTABLISHED state, U.N, U.T, and U.P can be reset,
since the connection will not return to OPEN on receiving RST
after it has become ESTABLISHED.

Retransmission timeout: 16 bits

Head of Send huffer queue [buffers SENT from user to TCP, but not
packetizedl: 16 hits

Tail of Send buffer gueue: 1B bits

Pointer to last octet packetized in partially packetized buffer
(refers to the buffer at the head of the queuel: 1B bits

Head of Send packet gueue: 1B bits
Tail of Send packet gueue: 1E bits
Head of Packetized buffer queue: 16 bits
Tail of Packetized buffer queue: 1E bits
Head of Retransmit packet queue: 1B bits
Tail of Retransmit packet gueue: 1B hits

Head of Heceive buffer gqueue [queue of buffers given by user to
RECEIVE letters, but unfilledl: 16 bits

Tail of Receive buffer gueue: 16 bits

e

TCP (Yersion 2) Specification

Head of Receive packet gueue: 16 bits

Tail of receive packet queue: 1E bits

Pointer to last octet filled in receive buffer; 16 bits

Pointer to next octet to read from partly emptied packet: 16 bits

[Note: The above tuo pointers refer to the head of the receive
buffer and receive packet queues respectively]

Foruard TCB pointer: 1B bits
Backward TCB pu]ntér: 16 bits
4.4 Structure af the TCP
4.4.1 Introduction

Any particular TCP could be viewed in a number of ways. It could be
implemented as an independent process, servicing many user processes,
It could he viewed as a set of re-entrant library routines which share
@ common interface to the local PSN, and common buffer storage. It
could even be vieued as a set of processes, some handling the user,
some the input of packets from the net, and some the output of packets
to the net.

We offer one conceptual framework in which to view the various
algorithms that make up the TCP design. In our concept, the TCP is
written in tuwo parts, an interrupt or signal driven part (consisting of
five processes), and a reentrant library of subroutines or suystem calls
which interface the user process to the TCP. The subroutines
communicate with the interrupt part through shared data structures
(TCB" s, shared buffer queues etc.). The five processes are the Output
Packet Handler uhich sends packets to the packet suitch: the Packetizer
uhich formats letters into internet packets; the Input Packet Handler
which processes incoming packets; the Reassembler which builds letters
for users; and the Retransmitter which retransmits unacknouledged
packets.

T

TCP (Version 2) Specification

As an example, we can consider what happens when a user executes a SEND
call to the TCP service routines. The buffer to be sent is placed on a
SEND buffer queue associated with the user's TCB. A 'packetizer’
process is awakened to create one or more output packets from the
buffer. The packetizer attempts to maintain a non-empty queue of output
packets so that the output handler will not fall idle waiting for the
packetizing operation,

A major implementation issue is whether to use TCP resources or user
resources for incoming and outgoing packets. [f the former, there is a
fairness issue, both among competing connections and betueen the
sending and receiving sides of the TCP.

When a packct is created, it is placed on a FIFD send-packet queue
associated with its origin TCB. The packetizer wakes the output handler
and then continues to packetize a few more buffers, perhaps, before
going to sleep. The output handler is awakened either by a "hungry’
packet suitch or by the packetizer. The send packet queus can be used
as a "work gueue' for the output handler. After a packet has been sent,
but usually before an ACK is returned, the output handler moves the
packet to a retransmission gueue associated with each TCB.

Retransmission timecuts can refer to specific packets or the
retransmission queue can be periodically searched for the timed-out
packets. [f an ACK is received, the retransmission entry can be removed
from the retransmit gueus. The send packet queue contains only packets
Haiting to be sent for the first time.

As usual, simultaneous reading and writing of the TCB queue pointers
must be inhibited through some sort of semaphore or lockout mechanism.
When the packetizer wants to serve the next send buffer gueue, it must
lock out all other access to the queue, remove the head of the queue
{assuming of course that there are enough buffers for packetizationl,
advance the head of the queue, and then unlock access to the queue.

Incoming packets are examined by the input packet handler. Here they
are checked for valid connection sockets and acknouledgements are
processed, causing packets to be removed, possibly, from the RETRANSHIT
packet queue, as needed,

-7R-

TCP (Version 2) Specification

Packets which should be reassembled into buffers and sent to users are
queued by the input packet handler, on the receive packet fgueue, for
processing by the reassembly process. The reassembler looks at its FIFOD
Work queue and tries to move packets into user buffers which are fgueued
Up in an input buffer gueue on each TCB. 1f a packet has arrived out of
order, i1t can be queued for processing in the correct sequence. Each
time a packet is moved into a user buffer, the left window edge of the
receiving TCB is moved to the right so that outgoing packets can carry
the correct ACK information. |f the SEND buffer queue is empty, then
the reassembler creates a packet to carry the ACK.

L =
S L e

As packets are moved into buffers and there—or= filled, the buffers are
dequeued from the RECEIVE buffer gueus and passed to the user. The
reassembler can also be auakened by the RECEIVE user call should it
have a non-empty receive packet queue with an empty RECEIVE buffer
queue,

4.4.2 Input Packet Handler

The Input Packet Handler is awakened when a packet arrives from the
netuork., It first verifies that the packet is for an existing TCB (i.e.
the local and foreign socket numbers are matched with those of existing
TCB's). If this fails, a "reset" message is constructed and sent to the
point of origin.

The input packet handler looks out for control or error information and
acts appropriately. As an example, if the incoming packet is a RESET
request, and is believable, then the input packet handler clears out
the related TCB, empties the associated send and receive packet gueues,
and prepares error returns for outstanding user SEND(s) and RECEIVE (s)
on the reset TCB. The TCB is are marked unused and returned to storage.
I'f the RESET refers to an unknoun connection, it is ignored.

Any ACK's contained in incoming packets are used to update the send
left window edge, and to remove the ACK'ed packets from the TCB
retransmit packet gueue. If the packet being removed was the end of a
user buffer, then the buffer must be dequeusd from the packetized
buffer queue, and the User informed.

-79-

TCP (Version 2) Specification

The packet sequence number, the current receive window size, and the
receive left windou edge determine whether the packet lies within the
Hindou or outside of jt,

Let W

vindou size

S = size of sequence number space

—
u

left window edge

R = L+l = right windou edge

¥ = 3equence number to be tested
For any sequence rumber, x, if IR S
B <= (x-L) mod S < {R-L) mod S = Y {4.4-1)

then x is within the window.
A packet should be rejected only if all of it lies outside the window.
This is easily tested by letting = be, first the packet sequence
number, and then the sum of packet sequence number and packet length,
less one in equation &.4-] above,

The other rase to ke checked occurs when the packet has both head and
tail outside of the receive window, but includes the window.

Let PL = packet length
L.R are as before
H = packet sequence number
T=H+PL-1a|ast packet sequence number
For any packet ranging over sequence numbers [H,T], if

B <=L -H<P
Bl

-EB-

, -— Sltri,-..- L l[l,gfl

L R e

2 PR T EE rig T

4 g oan i TCP (Version 2) Specificatiaon

L, S &
and :

ol 2 L

i s sath 7 Vi wht i Tt i Eove Y (. 6-2)

then the packet includes the receive Windou.

[f the packet length is zero fe.g. an ACK packet), tests should be
performed as if the packet length were one to accommodate the case that
the receive window is zero,

I'f the packet lies outside the uindou, and there are no packets waiting
to be sent, then the input packet handler should construct an ACK of
the current receive left window edge and queue it for output on the
send packet gueue, ard signal the output packet handler. Successful ly
received packets are placed on the receive packet queue in the
appropriate sequence order, and the reassembler signal led.

The packet window check can not be made if the associated TCB has not
received a SYN, so care must be taken to check for control and TCB
state before doing the window check.

4.4.2 Reassembler

The Reassemhler process is activated by both the Input Packet Handler
and the RECEIVE user command. UWhen the reassembler is auakened it
looks at the receive packet queue for the associated TCB. If there are
some packets there then it sees whether the RECEIVE buffer queue is
enpty. [f it is then the reassembler gives up on this TCB and goes bhack
to sleep, otheruise if the first packet matches the left window edge,
then the packet can he moved into the user's buffer. The reassembler
keeps transferring packets into the user's buffer until the packet is
enpty or the buffer is full, Note that a bhuffer may be partly filled
and then a sequence "hole' is encountered in the receive packet gqueue.
The reacsembler must mark progress so that the buffer can be filled up
sturting at the right place when the 'hole’ is filled. Similarly a
packet might be only partially emptied when a buffer is filled, so
progress in the packet must be marked.

If a letter was successfully transferred ta a user buffer then the

-81-

TCP (Yersion 2) Specification

reassembler signals the user that a letter has arrived and dequeues the
buffer associated with it from the TCB RECEIVE buffer queue. 1§ the
buffer is filled then the user is signaled and the buffer dequeused as
bhefore. The event code indicates uhether the buffer contains al | or
Part of a letter, as described in section 2.4,

In every case, when a packet is delivered to a huffer, the receive left
Hindow edge is updated, and the packetizer is signaled., This updating
must take account of the extra octets included in the sequencing for
certain control functions (SYN, RSN, ARQ, INT, FIN,1. If the send
packet queue is empty then the reassembler must create a packet to
carry the ACK, and place it on the send packet gqueue.

':Hmassemhlg of incoming packets containing both the beginning and
end-of-segnent (BOS, ENS: gee figure 4.3-1) marks is straightforuard.
The packet checksum is intact in the packet header and can he used to
validate the end-to-end correctness of the data.

Arriving packets ujth only one or neither bit set are fragments created
dt a gateuway. The intent behind the TCP deszign is to preserve the
end-to-end nature of the checksum and acknouledgement procedure, even
in the presence of fragmentation. To achieve this goal, fragments must
be reassembled into segments and checksummed. This means, in

Pparticular, that the original segment heacer must be reconstructed.

The rules of gateway fragmentation are straightforuward. A packet
consisting of sequence numbers 18B-539 can be fragmented, for instance,
into tuwo packets of 758 octets each {including contraol). The gateuay
uses figure 4.1-3 to determine which sequence-bearing control flags to
set in each fragment header. In the worst case, suppose all
sequence-bearing control bits are set (i.e., SYN, INT, ARQ, RSN, FIN}Y,
leaving 495 octets of data. A gateuay could produce tuo fragments, the
firel beginning with sequence mumber 188 and including SYN, INT, ARO
and up to and including data sequence 349. BOS would be set, along with
ACK and the window field. The checksum field would he zerao.

The second packet would contain data sequences 358-537 and controls RSN

and FIN, as well as EOS, a checksum {for the original segmemt - it is
not recomputed), and the neu sequence number associated with RSN in an

=87 -

TCP (Version 2} Specification

option field. The ACK and window fields are duplicates of those in the

tirst fragment.

If EOL is present in the original packet, it is carried only in the
last fragment produced. Note that a segnent can be divided imte more
than tuc fragments, and that a fragment can also be divided. The BOS
bit stays with the first fragment, even if that fragment is subdivided
tater. The EOS and EOL bits stay with the last fragment. Intermediate
fragments may not carry any of BOS, EODS, or EOL.

Ouring reassembly of a segment, it may happen that fragments arrive
With sequence number extents which overlap (due to alternate gateway
routing and diffarent fragmentation). This makes the job of
reaccembling fragments more difficult, but not impossible. Al though it
is not part of the current specification, it may be useful for gateways
to produce a fragment checksum in addition to passing the segment
checksum intact. In this way, a bad fragment is less |likely to mess up
reacsembly of a segment.

Gatewau fragmentation rules may require modification or augmentation to
deal with option fields in packet headers. While it is generally true
that options tend to stay with the fragment marked "BOS" we have
already seen that an RSN-bearing packet keeps the option with the
packet containing the RSN,

The rules of packet retransmission require that retransmitted packets
contain the latest ACK and window information available. This means
that a duplicate of a segment, if fragmented, may have a different
checksum than earlier copies. To assure that segment reassembly is not
frustrated by this effect, the ACK and window information used to
validate the reassembled checksum should be taken from the packet
containing the checksum (i.e. the fragment marked "E0S").

4,4.4 Packetizer

The Packetizer process gets work from both the Input Packet Handler and
the SEND user call. The signal from the SEND user call indicates that
there is something new to send, while the one from the inmput packet

I I | R
CaTL vk §louct puly i

‘;4/. fz":.“':"géf;h- M.".‘ L I' .
i

FRne.
83 G
:lr - -_A.._ 5 -L!ﬂ" -,‘\
Aol _.,.Ma, mf.’z:ﬂ“ K iinoir) bt S0
| ! . ; ;;-J’:v.._-‘r {. : - uk :
' ,"f.ﬁ-f 71 fi.-_h-n'"r JIRCE ﬂ AT 't o
Al _ca VR i .r_if Amu# 5’-*:’.45-- A s T

call T

TCP (Yersion 2) Specification

handler indicates that more TCP buffers may be available from delivered
packets,

When the packetizer is awakened it looks at the SEND buffer qgueue for
the associated TCB, [f there is a neu or partial letter auaiting
packetization, it tries to packetize the letter, TCP buffers and Windou
pernitting. For every packet produced it signals the output packet
handler (to prevent deadlock in a time sliced schedul ing schemel. 1§ a
"run to completion' scheme is used then one signal only need be
Produced, the first time a packet is produced since awakening. If
packetization is not possible the packetizer goes te sleep.

If a partial buffer was transferred then the packetizer must mark
Progress in the SEND buffer queue. Completely packetized buffers are
dequeued from the SEND buffer queue, and placed on a packetized buffer
queue, so that the buffer can be returned to the user uhen an ACK for
the last bit is received,

When the packetizer packetizes a letter it must see whether it is the
first piece of data being sent on the connection, in which case it must
include the SYN bit. Some implementations may not permit data to be
sent with SYN and others may discard any cdata received with SYN.

4.4.5 Output Packet Handler

When activated by the packetizer, or the input packet handler, or some
of the user call routines, the Output Packet Handler attempts to
transmit packets to the net (may involve going through some other
netuork interface program). Transmitted packets are dequeued from the
send packet gueue and put on the retransmit gueue along uith the time
Hwhen they should be retransmitted.

All data packets that are (re)transmitted have the latest receive left
uwindouw edge in the ACK field. Some error messages may set the ACK field
to refer to a received packet's sequence number,

4.4.6 Retransmitter

This process can either be vieued as a separate process, or as part of

_Bb-

TCP (Version 2) Specification

the output packet handler. [ts implementation can vary: it could either
perform its function, by being awakened at regular intervals, or uwhen
the retransmission time occurs for every packet put on the retransmit
queue. In the first case the retransmit queue for each TCE is examined
to see if there is anything to retransmit. |f there is, a packet is
placed on the send packet queue of the corresponding TCE . The output
packet handler is also signaled.

Another "demon" process monitors al | user Send buffers and
retransmittable control messages sent on each connection, but not uet
@cknouledged. 1f the global retransmission timeout is exceeded for any
of these, the user is notified and the connection ahor ted.

4.5 Buffer and Window Allocation
4.5.1 Introduction

The TCF manages buffer and Wwindow allocation on connections for tuwo
MAain purposes: eauitably sharing limited TCP buffer space among all
connections (multiplexing functien), and limiting attempts to send
Packels, so that the receiver is not suamped (flou control function),
For further details on the operation and advantages of the window
mechanism see [CK74).

Good allocation schemes are one of the hardest problems of TCP design,
4nd much experimentation must be done to develop efficient and
etiective algorithms., Hence the following suggestions arc merely
initial thoughts, Different implementations are encouraged with the
hope that results can be compared and better schemes tdeve | oped,

4.5.2 The SEND Side

The uindou is determined by the receiver. Currently the sender has no
control over the SEND wincdow size, and never transmits beynnd the right
Windou edge (except during resunchronizationl,

Buffers must be allocated for outgoing packets from a TCP huffer pool.

The TUP may not be willing to allocate a full uindon's uorth of
buffurs, so buffer space for a connection may be less than what the

-£5-

TCP (VYersion 2) Specification

Window Wwould permit. No deadlocks are possible even if there is
insufficient buffer or windou space for one letter, since the receiver
till ACK parts of letters as they are put into the user's buffer, thus

advancing the uindou and freeing buffers for the remainder of the
letter,

It is not mandatory that the TCP buffer outgoing packets unti |
; acknouledgements for them are received, since it is possible to
recconstruct them from the actual buffers sent by the user. Howuever,

for purposes of retransmission and processing efficiency it is very
convenieni to do.

4.5.3 The RECEIVE Side

At the receiving side there are two requirements for buf fering:

{1) Rate Discrepancy:

1f the sender produces data much faster or much slower than the
receiver consumes it, little buffering is needed to maintain the
receiver at near maximum rate of operation. Simple gueueing analysis
indicates that uhen the production and consumption (arrival and
servicel rates are similar in magnitude, more huffering is needed to

reduce the effect of stochastic or bursty arrivals and to keep the
receiver busy,

{2) Disorderly Arrivals:

When packets arrive out of order, they must be bufferecd until the
missing packets arrive so that packets (or letters) are delivered in
sequence. UWe do not advocate the philosophy that they bie discarded,
urnless they have to be, otheruwise a poor effective banduwidth may be
chiserved. Path length, packet size, traffic level, routing,

timeouts, windou size, and other factors affect the amount by which
packets come aut of order.

The considerations for choosing an appropriate window are as fol lous:

Suppose that the receiver knous the sender’'s retransmission timeout,

g +r et
=1 gk el ¥

i

_RE

TCP (Version 2) Specification

"K', This is usually close to the round trip transmission time.
Suppose also, that the receiver's acceptance rate is "UT bits/sec,
and the windouw size is 'W' bits, Ignoring line errors and other
traffic, the sender transmits at a rate between W/K and the maximum
line rate (the sender can send a window's worth of data each timeout
period).

If W/K is greater than U, the difference must be retransmissions
which is undesirable, so the window should be reduced to W', such
that W'/K is approximately equal to U. This may mean that the entire
banduidth of the transmission channel is not being used, but it is
the fastest rate at which the receiver is accepting data, and the
line capacity is free for other users. This is exactly the samne case
uhere the rates of the sender and receiver were almost equal, and so
more buffering is needed. Thus we see that line utilization and
retransmissions can be traded off against buffering.

If the receiver does not accept data fast enough {by not performing
sufficient RECEIVES] the sender may continue retransmitting since
unaccepted data will not be ACK'ed. In this case the recejver should
reduce the uindow size to "throttle" the sender ancd inhibit useless
retransmissions.

Limited experimentation, simulation, and analysis with buffering and
Window allocation suggests that the receiver should set aside buffer
Sppace to accommodate any uwindow sent to the reomote tramsmifter, Ay
attempts at optimistically setting a large window with inacdeguate

buffer appears to lead to poor banduidth ouing to occasional {or
frequent) discard of arriving packets for which no buffers are
available., Theoretically selection of the ratio of windou size grantecd
to buffer store reserved should be eguivalent to the selection of a
buffer size for a statistical multiplexor.

If the user at the receiving side is not accepting data, the windouw
should be reduced to zero. In particular, if all TCP incoming packet
bhuffers for a connection are filled with received packets, the windou
must o to zero to prevent retransmissions until the user accepts some
packets,

-B7 =

TCP {VYersion 2) Specification

Setting the receive uindow to zero can have some interesting side
effects. In particular, it is not enough to merely send an empty ACK
packet with the new, non-zero windew, when the window is re-opened. 1f
the ACK is lost, the other TCP may never transmit again. ACK's cannot
be retransmitted since they cannot, themselves, be ACKed (ue would not
know when to stop retransmitting). The solution is to send an ARO
packet whenever the receive window is to change from zero to non=zero.
The ARU can be retransmitted until acknowledged, since AROD takes up aone
sequence number. A TCP which receives a zero send window should stop
transmission, but can continue to acknowledge incoming traffic.

88—

TCP (Version 2) Specification
ik Lo o™y

i

.r_,{,] fr
R
5. Refeorcnces f =

Notes of Working Group 6.1 (INWG - International Network Working Groupl,
International Federation of Information Processing, are available through its
chairman, Mr. Derek L. A. Barher, Project EIN, National Physical Laboratory,
Teddington, Middiesex, England.

Readers interested in a rich source of reference to the literature on
resource sharing networks are urged to consult NBS special publication 384
[(Helen M. Hood, Shirley Ward Watkins, Ira L. Cotton, Annotated Bibliography
of the Literature on Resource Sharing Netuworks, Mational Bureau of Standards
Special Publication 384, Revised 1976, Institute for Computer Scienmces and
Technologyl available from the Superintendent of Documents, U. 5. Government
Printing Office, Washington, D.C. 28482, order by SD Catalog No.
Cl3.18.384/rev, Stock No. BB3-883-81678-5, 82.45,

Special collections of papers on related subjects may be foume in:

l. HWesley Chu (Ed.), Advances in Computer Communications, Artech House,
1376 (revised).

—

<. HRobert Blanc and Ira Cotton (Eds.), Computer Netuworking, IEEE Press,
WNew York, 1976.

-&9-

TCP {(Yersion Z2) Specification

ARG

D. Aituyver, A. M, Rybczynski, "Datapac Subscriber [nterfaces,"
Proceedings of ICCC7E, p. 143-149,

Barber7b

Derek L.A. Barber, "A European Informatics Network," Proceedings of
ICCC76, p. 44-5B

BBN18Z2

Bolt Beranek and Newman, "Specification for the Interconnection of a Host
and an [MP," BBN technical Report #1822, January 1976 (Revised).

Belsnes7é

Dag Belsnes, "Note on Single HMessage Communication," INWG Protocol Note
H3, IFIP Working Group 6.1, September 1974,

Belsnes?4A

D. Belsnes, "Flow control in packet suitching networks," INWG Note HB3,
IFIP Working Group B.1, October 1374.

BLSS

Jerry 0. Burchfiel, Elsie M. Leavitt, Sonya Shapiro, Theodore RA. Strollo,
TENEX USERS' GUIDE, Bolt Beranek and Newman, Inc., Cambridge, MA, January
1975,

BLW74

Richard Binder, Wai Sum Lai, Morris Wilson, "The Alohanet Menehune -

-9p-

TCP (Version 2) Specificatian

Version 11," The Aloha Sustem Technical Report B74-6, University of
Hauaii, September 1974,

BFT7E

Jerry 0. Burchfiel, William W. Plummer, Raymond S. Tomlinson, "Proposed
Revision to the TCP," INWG Protocol Note #43, IFIP W.G. E.1, September
18976,

Bright7s
Roy D. Bright, "Experimental Packet Switch Project of the UK Post Dffice,
"In Computer Communication Metuworks, Grimsdale and Kuo, Editors, NATO
Advanced Studies Inmstitute Series, 15-4, Noordhoff International, Leyden,
Netharlands, 1975, pp 435-444.

BiG
Jerry D. Burchfiel, Raymond S. Tomlinson, Michael Beeler, "Functions and
Structure of a Packet Radio Station," AFIPS Proceedings, volume &4, 1975,
Mational Computer Conference, (Anaheim, CA, May 13-22, 1975}, AFIPS Press,
Montvale, NJ, 1975, p. 245-2L1,

BLI7Z
fobert Bressler and David C. Walden, "A proposed Experiment with a Message
Suitching Protocol," ARPA RFC 333, NIC 3926, Augmentation Research Center,
Stanford Research Institute, Menlo Park, CA., May 1372.

Cashin7e
P.M. Cashin, "Datapac Network Protocols,"” Proceedings of ICCC78, P. 158.

CCCv@

Stephen Carr, Stephen D. Crocker and Yinton G. Cerf, "Host-Host
Lommunication Protocol in the ARPA Netuork," AFIPS Proceedings, 1378
Spring Joint Computer Conference, volume 36, (Atlantic City, NJ, May 5-7,
1378), AFIPS Press, Montvale, NJ, 1378, p. G5B89-598.

-91-

TCP (Yersion 2) Specification

COS74

Vinton G. Cerf, Yogen K. Dalal, Car! Sunshine, "Specification of Internet

Transmission Control Program,” INWG General Note #72, IFIP Working Group
B.1, December 1374,

CEHKKSY7

Vinton G. Cerf, Stephen Edge, Andrew Hinchley, Richard Karp, Peter T.

Kirstein, Paal Spilling, "Final Report of the Internetwork TCP Project,”
to appear.

Carf74

Vinton G.Cerf, "An Assessment of ARPANET Protocols," The Second Jerusalem

Conference on Information Technology, (Jerusalem, Israel, July 29-August

1, 1974), p. B53-664 (also, IMWG General Note 78, IFIP W.G. B.1, July 1374
and in Netuork Sustems and Software Infotech State of the Art Report 24,

Infotech Information, Ltd., Nicholson House, Maidenhead, Berkshire,
England, 1975.1

Cerf7B

Vinton G. Cerf, "SCCU/MCCU Characteristics for AUTODIN 11," Digital
Systems Laboratory Technical Note #32, Stanford University, July 197B.

Cer f7Ga

Vinton G.Cerf, "TCP Resynchronization," Digital Systems Lab Technical Note
H73, Stanford University, January 1976.

Cer t76h

Vinton G.Cerf, "ARPA Internetuork Protocols Projects, Status Report, for
the period November 15, 1375 - February 15, 1976," Oigital Systems
Laboratory Technical Note #83, Stanford University, February 1976.

CGN786

-92-

TCP (Yersion 2) Specification

W. W. Clipsham, F. E. Glave, M. L. Narraway, "Datapac Network Overview, "
Proceedings of ICCC78, p. 131-136.

CHMP72

Stephen D. Crocker, John F. Heafner, Robert Metcal fe and Jonathan B.
Postel, "Function-Oriented Protocols for the ARPA Computer Network, AFIPS
FProceedings, 1972 Spring Joint Computer Conference, volume 4B, (Atlantic
City, NJ, May 16-18, 1972), AFIPS Press, Montvale, NJ, 1972, p. 271-279.

CK74

Vinton G. Cerf and Robert E. Kahn, "A Protocol for Packet Ne tuork
Intercommunication, " IEEE Transactions on Communications, volume cComn-22,
No. 5, May 1974, p. BE37-B48. (An early version of this paper appeared as
INWG Genmeral Note #33, IFIP Horking Group B.1, September 1973}.

CMSZ75

Vinton G. Cerf, Alexander McKenzie, Roger Scantlebury, Hubert Zimmermann,
"Proposal for an Internetwork End to End Protocol,” INWG General Note #3986,
INE M B [S September 1975 (also in ACH SIGCOMM Quarteriy Review Vol.
6. No. 1, Jan 1978,) p. B3-89

CS74

Yinton G. Cerf and Car| Sunshine, "Protocols and Gateuays for the
Interconnection of Packet Switching Netuerks," The Aloha Sustem Technical
Report CN 74-22, Proceedings of the Seventh Hauaii Intermational
Conference on Systems Sciences, University of Hawaii, (Homolulu, Hawaii,
January 8-18, 1974).

Dalal74

Yogen K. Dalal, "More on Selecting Sequence Numbers, " INWG Protocol Note
4, TFIP Working Group 6.1, August 1974, Also in Proceedings of the ACH
STGLOMN/SIGOPS Interprocess Conmunications Workshop, (Santa Monica, CA,
flarch 24-25, 1975}, and ACH Uperating Systems Revieuw, Volume 9, Number 3,
July 1975, Association fer Computer Machinery, New York, 1975.

-893-

TCP (Version Z) Specification

Dalal75

Yogen K. Dalal, "Establishing a Connection, "IMUG Protocol Note #14, IFIP
Working Group 6.1, March 1975,

Danthine?s

Andre Danthine and E. Eschenauer, "Influence on the Node Behavior of the
Node-to-Node Protocel," Proceedings, Fourth Data Comm. p 7-1 to 7-8.

Davies?l

Donald W. Davies, "The Control of Congestion in Packet Suitching
Networks," Peter E. Jackson, proceedings, ACM/I1EEE Second Symposium aon
Problems in the Optimization of Data Communication Sustems, (Palo Alto,
CA. October 2ZB8-22, 1971), IEEE (at -71C59-C, p. 46-43,

DOCA7S
System Performance Specification for Autodin 11, Phase 1, Defense
Communications Agency, Defense Communication Engineering Center, MNovember
1975.

OCAYEG

Clizabeth Feinler and Jonathan B. Postel, ARPANET Protocol Hanclbook,
MNetwork Information Center, Stanford Research Institute, Menlo Park, CA,
April 1976,

DOLFRYS

A. Danet, A. Despres, A. LeRest, G. Pichon, 5. Ritzenthaler, "The French
Public Packet Switching Service: the TRANSPAC Network," Proceedings of
ICCC76, p. 251-268.

OHMMLI7 &

W. Crouther, F, Heart, A. McKenmzie, J. McQuillan, D. Walden, Netuwork
Design Issues, Bolt Beranek and Neuman, Inc. Technical Report No. 2918,

94

TCF (Version Z) Specification

November 1974 (also, INWG General Note #i64, |FIP Working Group B.1,

October 1374: ARPA Netuork Measurement Note #26, Network Measurement
Group, October 1974).

FLTS

Stanley C. Fralick and James C. Garrett, "Technological Considerations for
Facket Radio MNetuorks," AFIPS Proceedings, volume 44, 1975, National
Computer Conference, (Anaheim, CA, May 19-22, 1975). AFIPS Prese,

Montvale, NJ, 1975, p, 233-243.

FGS7S

Howard Frank, lsrael Gitman, Richard van Siyke, "Packet Radio oystem -
fletuark Considerations," AFIPS Proceedings, volume 44, 1375, MNational
Computer Conference, (Anaheim, CA, May 13-22, 1975}, AFIPS Press,
Montvale, NJ, 1975, p. 217-231.

L5750

M. Gien and R. Scantlebury, "Interconnectian of Packet Switched Networks,

Theory and Practice, " proceedings of EURDCOMP, Brunel Universitu,
September 1975,

HKKOCW Y8

Frank E. Heart, Robert E. Kahn, S. M. Ornstein, William R, Crouther, and
David C. Walden, "The Interface Message Processor for the ARPA Computer
Netrork," AFIPS Proceedings, 1978 Spring Joint Computer Conference, volume

36, (Atlantic City, NJ, May 5-7, 1578), AFIPS Press, Montvale, NJ, 1978,
P 551-5EB7,

Kahn73

Robert E. Kahm, "Status and Plans for the ARPANET." Martin Greenberger,
Julius Aronofsky, James L. McKenney, William F. Massy, Networks for
Rescarch and Education: Sharing Computer and Infermation Resources
Nationuwide, MIT Press, Cambridye, M4, 1973, p. 51-E54.

=95

TCP (Version 2) Specification

Kahn?S

Robert E. Kahn, "The Organization of Computer Resources into a Packet
Radio Network," AFIPS Proceedings, volume 44, 13975, National Computer
Conference, (Anaheim, CA, May 19-22, 1975), AFIPS Press, Montvale., NJ,
1975, p. 173-186.

Karp?3

Peggy M. Karp, "Origin, Development and Current Status of the ARPANET, "
COMPCON72 - Seventh Annual IEEE Computer Society International Conference,
Digest of Papers, 'Computing Netuorks from Mini's to Maxi’'s - Are They for
Real?' (San Francisco, CA, February 27-28, March 1, 1373), Institute of
Electrical and Electronic Engineers, Inc., MNeuw York, 1973, p. 43-52.

KC71

Robert E. Kahn, William R. Crouther, "Flow Control in a Resource-Sharing
Computer Metuork," Peter E. Jackson, Proceedings, ACH/IEEE Second
Symposium on Problems in the Optimization of Data Communication Systems,
(Palo Alto, CA. October 28-22, 1971), 1971, IEEE (AT-71C53-C, p. 188-11E.

Kleinrock74
Leonard Kleinrock and William E. Naylor, "On Measured Behavior of the ARPA
Network, AFIPS Proceedings, National Computer Conference, Yolume 43,
(Chicago, IL., May B-18, 1974), AFIPS Press, Montvale, NJ., p. 767-788.
Kleinrock75
Leonard Kleinrock and Holger Opderbeck, "Throughput in the ARPANET -
Protocols and Measurement," Proceedings, Fourth Data Communications

Symposium, {Quebec City, Canada, 7-9 October 1375), p. E-1 to 6-11.

Kleinrock?s

Leonard Kleinrock, William E. Naylor, Holger Opderbeck, "A Study of Line
Overhead in the ARPANET." Communications of the ACM, Vol. 19, No. 1, p. 3.

-95-

TCP (Version Z2) Specification

LGK?75

David Lloud, Martine Galland, Peter T. Kirstein, "Aim and Objectives of
Internetuork Experiments, " [NUG Experiments Note #3, IFIP Working Group
El -I. ¥ FE‘t\r‘uElr'l:] 13?5-

Mathis?e

James E. Mathis, "Single-Connection TCP Specification," Digital Sustemsg
Laboratory Technical Note #75, Stanford University, January 25, 1976.

MO7G

Robert M. Metcalfe and David R. Bogys, "Ethernet: Distributed Packet
Suitehing for Local Computer Netuorks,® Communications of the ACH, Yolume
13, MNeo. 7, July 1976, p. 395-484.

MCCUW72

Jobn M. Meluillan, William R. Crouther, Bernard P, Cosell, David C.
Halden, Frank E. Heart, "lmprovements in the Design and Performance of the
ARPA Netuork, "AFIPS Proceedings, Fall Joint Computer Conference, Volume
41, p. 741-754,

McKenzie?3

A. McKenzie, "Host-Host Protocal for the ARPANET," NIC # 8245, Stanford
Research Institute [also in ARPANET Frotocols Notebook NIC 7184].

MeKonzie7ada
Alexander McKenzie, "Some Computer Netuork Interconnaction lssues, " AFIPS

Proceedings, National Computer Conference, Volume 43, (Chicago, I11., May
6-18, 1974), AFIPS Press, Montvale, NJ., p. B57-BG5S,

Mekoene ia?sb)

Mesander McKenzie, “Internetuork Host-to-Host Frotocol," IMUG General
Note #74, IFIP Working Group 6.1, December, 1974.

-87-

TCP (Version Z2) Specification

Mcliii I lan7?5%

Jobn M. MeQuillan, "The Evolution of Message Processing Technigues in the
ARPA Netoork, " Netuork Systems and Softuare, Infatech State of the Art
Hieport 24, Iniotech Information, Ltd., Nichaoleon House, Maidenhead,
UBorkshire, England, 1975,

M f4

Eric H. Mader, William R. Plummer, Raymond S. Tom!linson, "A Frotocol
Experiment,” INWG Experiment Note #1, IFIP Working Group 6.1, August 1974,

NACTZ

Network Analysis Corporation, ARPANET: Design, Operation, Management and
Fer formance, Netuork Analysis Corporation, Glen Cove, NY, April 1973.

OK 74

Holger Dpderbeck and Leonard Kleinrock, "The Influence of Control
Proccdures on the Performance of Packet-Switched Networks, "National
Telecommunications Conference, San Diego, California, December 1974,

FLR7Ga

Jonathan B. Postel, Larry L. Garlick, Raphael Rom, Tranemissinn Control
Prrotocol Specification, fAugmentation Recearch Center, Stanfored Flesearch
Institute, Menlo Park, CA, 15 July 1976.

PGR7CL

Jonathan B. Postel, Larry L. Garlick, Raphae! Rom, Terminal-to-Host
Protocol Specification, Augmentation ResearchCenter, Dtanford Reserch
Institute, Menlo Park, CA., 15 July 1976.

Poutel 72

J. Postel, "Official Initial Connection Protocol," Current HWetuork

_9&-

TCP (Version 2) Specification

Protocols, Netuwork Information Center, Stanford Research Institute, Menlo
Fark, California, January 1972 (NIC 7181).

Fauzin?2

Louis Pouzin, "Interconnection of Packet Switching Networks," INWG Genera |
Note #42, IFIP Working Group 6.1, October 1973,

Mouzin73a
Louis Pouzin, "Presentation and major design aspects af the CYCLADES
Computer Network," Data Netuorks: Analysis and Design, Third Data
Communications Symposium, St. Petersburg, Florida, November 1373, FP.
2B-57. :

Fouzinféaa
Louis Pouzin, "A Proposal for Interconnecting Packet Suitching Networks, "
INHG General Note #GR, IFIP W.G. B.1, March 1974, (also in proceedings of
EURCCONP, Brunel University, May 1974, p. 1B23-1836).

Fouziniin
Louis Fouzin, "Cigale, the Packet Switching Machine on the CYCLADES
Lotiputer Netuwork," Jack L. Rosenfeld, Information Processing 74,
broceedings of the IFIP Congress 1974, Computer Harduare and Architecture
Volume, (Stockholm, Sueden, August 5-18, 1974), American Elzevier
FPublishing Ce., Inc., New York, 1974, p. 2155-159,

Retz75
Uavid L. Retz, "ELF - A System for Netuork Access," 1375 IEEE Intercon
Conference Record, [New York, April &-18, 1975), Institute of Electrical
and Clectronic Engineers, Ine., Neu York, 1875, p. 25-2-1 to ’5-2-5,

Tirsier i =70,

L cnce G, Nober ts, “International Interconnection of Public Packet

-99-

TCP (Version 2} Specification

Networks," Proceedings, International Conference on Computer
Communication, (Toronte, Ontaric, Canada, August 13781, p. 2249,

RU7A

Laurence G. Roberts and Barry 0. Wessler, "Computer MNetwuork Development to
Achieve Resource Sharing," AFIPS Proceedings, 1978 Spring Joint Computer
Confcrence, volume 36, (Atlantic Cituy, NJ, May 5-7, 1978}, AFIPFS Press,
Montvale, NJ, 1978, p, 543-549,

RW73

Laurence G. Roberts and Barry 0. Wessler, "The ARPA Net," Morman Abramson
and Franklin F. Kuo, Computer-Communication Netuorks, Frentice-Hall, Inc.,
Engleuwood Cliffs, NJ, 1973.

Schantz74

R. Schantz, "Reconnection Protocol", private communication; available from
Schantz at BBMN. :

SH75

Adrian V, Stokes and Peter L. Higginson, "The Problems of Connecting Hosts
into ARPANET," Proceedings of the European Conference on Communication
Netuorks, September 1975, On-line Conferences, Ltd., Oxbridge, England, p.
25-34,

Sunshine/é

C. Sunshine, "lssues in communication protacol design -- formal
correctness,” INWG Protocol Note 45, October 1974.

Sunshine7S

Car | Sunshine, "lssues in Communication Protocol Design - Formal
Correctness," INWG Protocol MNote #5, IFIP Warking Group E.1, Octoher 1975.
Also in Proceedings of the ACM SIGCOMM/SIGOPS Interprocess Communications
Workshop, (Santa Monica, CA, March 26-25, 1975), and ACH Operating

-188-

TCP (Version 2] Specification

Systems Revieu, Volume 9, Number 3, July 1975, Association for Computer
Machinery, New York, 1975,

Sunzhine7Ea

Carl Sunshine, Interprocess Communication Protocols for Computer Networks,
Stanford University (Ph.O. Dissertation), 1975.

Sunchine?&h

Carl Sunshine, "Alternatives for Compuier Netusork Interconnection,"
Procoedings of the Berkeley Workshop on Distributer Data Management and
Computer Networks, (Laurence Berkeley Laboratory, Ca, May 25-26, 1978), p.
276-238

= L)
Sl

fl. Scantlebury and P.T. Wilkinson, "The Design of a Suitching System to

— Allou remote Access to Computer Services by other computers and Terminal
Devices," Second Symposium on Problems in the Optimization of Data
Comnunication Systems Proceedings, Palo Alto, California, October 1971
pp. 1GB-1E7.

Tam! inson74

Maymond S. Tomlinson, "Selecting Sequence Numbers," INWG Protocol Note #2,
[FIP Working Group B.1, August 1974, Also in Proceedings of the ACM
S1GCOMMY/S1G0PS Interprocess Communications Horkshop, (Santa Monica, ChA,
March 24-25, 1975), and ACHM Operating Systems Review, Volume 9, Number 3,
July 197S, Acsociation for Computer Machinery, New York, 1975.

Halden?2

David C. Walden, "A Sustem for Interprocess Communication in a Aesource
Sharing Computer Metuork," Communications of the ACH. Volume 15, Issue 4,
April 1972, p. 221-738.

HR75

-181-

TCP [Version 2) Specification

D. C. Walden and R, C. Rettberg, "Gateuay Design for Computer Network
Interconnection,” Proceedings, European Conputing Conference on
Communication Netuorks, September 1975, On-1line Conferences, Ltd.,
Oxbridge, England, p. 113-128.

YM/E

S. C. K. Youny, C. I. MeGibbon, "The Contral System of the Datapac
MNetuork, " Froceedings of ICCC76, p. 137-142.

RT3

Hubcrt Zimmermann and Michels Elie, "Proposed Standard Host-Hnst Protocol
for Heterogencous Computer Networks: Transport Protocol,” INWG General
Mote #43, [FIP Working Group B.1, December 1973 (also lnstitute Recherche
dInformatique et o'Automatigue [IRIA) Project CYCLADES report SCH 513}.

ZE7H

Hubert Zimmermann and Michele Elie, "Transport Protocol Standard Host/Host
Protocol for Heterogoneous Computer Metuorks," INHG General MNote 81, IFIF
Horking Group B.1, April 1974 f(also [RIA Project CYCLADES Report SCH
51%.1)

Zimmer mann’s

Hubert Zimmermann, "The CYCLADCS End to End Protocol." Proceedings, Fourth

Data Communication Sumposium, (Quebec City, Canada, October 7-3, 1975}, p.
7-21 to 7-26.

TCP (Version Z)} Specification

Appendix A - Pathological Examples and Other Notes

Other solutions to the Feésunchronization problem were examined Lhan those
the speccification and we illustrate them here in the hope that these examples
will save others the trouble of exploring dry uclls.

Our original resynchronization scheme involved exchanging DSN, ACK, SYN. ACK
on one or both sides of the connection. . Mathis constructed a pathological
example shouing that the unprotected acceptaance of SYN after o OSN leads to
potential trouble, and it was this exanple which led us 1o conc lude,
initially, that resynchronization must be assumerd to occur long after any old
SYNs from previous connection initiation or resynchronizations had dier avay.

ce

18,

11.

TCPA TCPB
SYN-SENT -=> <SE0 B><57N> (delayed)
SYN-SENT --> <5E0 B><SYN> -—> S"fH-HEEEI‘JED:
SYN-SENT <-- <GEQ 5@><SYN-<ALK> <-- SYN-RECEIVED
ESTALLISHED -=> <SEQ 1-<ACK 51><9 data bytess --» ESTABLISHED
DSN-SENT --> <SEQ 1@><0SN><ACK 5]> --> DSN-RECEIVED
DESYNCHED <=-- <5E0 S1><ACK 11> <-~ DOESYNCHED
RESYHNCH =-> <5EQ0 1868><SY¥N- (el ayed)
(delayed duplicate) . <5SEN B>-5YN- ~=> RLSYNCH
Dad ALK <~-- <5E0 S51=<ACK 1» <-- ESTABLISHED
(e laycd) + <SE0 1BBB><SYN» --> Bad 5EQ!
HUH? <=- <5EQ] 51><ERR B><1B8P0> <== Unexpected SyN!

-183-

TCP (Version 21 Specificatiaon

12, (reset!) --> =GEMl 1908-<ERR 751> --> abor ter
Resynchronization Failure under Delayed Duplicate SYN Conditions
Figure A-1

In this example, an old duplicate original SYN (line 1, figure A-1}
complelely confuses TCP B, after uhich an exchange of errors 6 and 7
("unexpected SYN" and "RESET") result uhen TCP A's resynchronizing SYN (lines
7. 18, figure A-1) finally appears. Thus, a perfectly ardinary
resynchronization procedure initiated by TCP A results in TCP B discarding
its end of the connection, thinking it was only half-open. Part of the
problem was that the error message affected both sides of the connection
(perils of full duplex connections!).

In an early attempt to bind sequence numbers across the resynchronization
gap, we considered another strategy in which both sides would desynchronize
and then resynchronize (the earlier example failed because there wuas no 3-uay
handshake on the resnchronizing SYN).

TCF A TCF B

1. OSN SENT --> <5E0 1@><DSN><ACK Z2B> --> DSN RECEIVED
2. 0OSMN SENT <—— «5E0 20><05SN><ACK 11> «<-- O5M RECEIVED
3. OEGYNC -=> <5EQ 11><ACK 21> ==» DESYNC

4, <-- <GEQ 2888><5SYN-<ACK 11> <-- SYM SENT

5. SYN SENT --> <520 1888><SYN><ACK 21> —-»>

E. --> <5E0 1881-<ACK 2881> --> ESTABLISHED
7. ESTABLISHED <-- <S5EQ0 28@1-<ACK 1BB1- <=

Oual DSN with SYN, ACK

Figure A-2

184

TCP (Version 2) Specification

In this example (figure A-2), hoth sides desynchronize and then go through a
handzhake uhich is protected (lines 4,5) by the presence af - ol ACK field
referencing the old Scquence numbers of the other side. 1t was noted that
this mechanism coes not easily reduce to one-sided resynchronization since,

iIf TCP B has sent no data or control (other than the original SYN) on the
connection, the ACK fields o the resunchronizing SYN and the original SYN
from TCP A would he identical. We then had to postulate the use of a NOP
control to acknouledge {he DSN and thus guarantee uniqueness of the ACK field
in TCP A's resunchrenizing SYN packet. This solution was nof pursued further,
but contains the seeds of the RSN describad in section 2.1.3. But in that
Lasc, old and new sequence numbers of the same sides of the connection,
rather than opposite sides, are bound together,

-185-

