September 1978

IEN: B5

Seclion: 2.4.2.1 9 i

SPECIFICATION OF INTERNETWORK
TRANSMISSION CONTROL PROTOCOL

TCP

Version 4

Jonathan B, Postel

September 1978

Informalion Sciences Institute
Universily of Southern California
A676 Admirally Way
Marina del Rey, California 90291

(213) 822-1511

INFORHATION SCIEMCES INSTITUTE

UNIVERSITY OF SOUTHERN CALITORMIA /ﬁ : /

Seplember 1978

TABLE OF CONTENTS

PF H. ' nCE " = ® n E F ¥ ® ® ® ® ¥

i " INT FIODLETIGN l L] L # # L] L] L] # L

1.1
1.2
1.3
1.4

1.5

2. PHILOSOPHY i

it e
AR

L=3]

”i:-h:”'y TR TN T R TR S T T S
STC‘PE # 8 ® & 8 & B B ® B B W *
Documenlation s & 84

InlorfAaceEs & ol ariratiie w6 % w: s Ak

(}I!l‘rﬂtiﬂn B & & B 8 8B & @& & 8 @

Relaled Work & 2 & 5 % 5 s = & &
Mochanisms Explained TN T
Funclional Specification of Interfaces
Problems Remaining + o« &« & '
Lessons Learned e e m mran
Fulure Direclions Bk s w W A

3. SPLCIFICATION I

== 3.l
3.z
3.3
an
as
3.6

Formalism Explained . . + « « .« .
Formal Specification « « « « = « &
Inlernel Header Format . . &« . .
Binctissinn’ i slia iy h A e ow wila

Examples & Scenarios S e e
Inlerfaces . & & & & & & s & & &

ﬂ'. Vl IHFIC“‘I |ON [l L] L] LI) L] L] L] L] L]

5 IMPLEMINTATION & & & & o o 5 o s

STOOO O Eoe
el B T S-L R % B B

GLOSSARY s ele e

Whal Nol To Leave Qut = MR
Ller Interfaces .+ . & - .
Mechanisms allalias e e R R el

Data Struclures: . « & o & & & s-0 & =

Propram Sizes, Performance Data .
Tesl Sequences, Procedures, Exerciser
Parameler Values « & & & & o &
DD[JLI[',P,ing R TR T I T T R R

BIDLIOGRAPHY ol e e w e w N

APPLNDICES T S T W I O

= A, Reconneclion Procedure & & o .

Fostel

* ® @ &% & &

B % a & w ¥ ® & ® L
LIS T . L I L
B OB B N ® & i L] L.
lllllll . L)
---------- i .
L] L] L L L L] L
L] i] L] L} L] L] L] L} L] L ¥
L] L] W [L] L] L] ¥ L] L] L
LI I T C IR R T]
L] L] L] Ll #* ¥ L] ¥ ¥ - L
IIIIII L Ll L L L]
. 8 B ® s a & &
lllllll L L L] L L]
1] [[] L[] L]] L] L] L] L] L
L L L | L L] ¥ L] L] "
--------- @ % a
W]]] L] L] L] L] L] L

¥ % 4% & & B & ® ® " &
lllllll L] L -
] L] L] L] L] L] L Boow L L] L
i [] [] L] LR | L] oA L L] L}
] L] L] L] L] L L L L a L] L]
L] L] L L] L] L ot .
L] Ll - L] L] L]
L] " L] L] L L] " & F 8B = @
- L] L L] L] L] - -
L]]] L] L L] L] L] L] L L} -
] L] L] L] L] L] L] L] L] L] L
. 4«4 @& = @& ® % & ® L] L] -
» 4 @ ® @& ¥ W & ® W ® @
" - L] - L L] L] L]
" = o= P & 4 ® = @m
& = = = @ - - -
- L] L] L] L L L} L]

E.F A R @ W

= o

TCP-4

iii

i

G G P M =

10

sl

13
33

&b
67

67

74

79

eSS

99

99

[Page i]

September 197
TCP-4 Blember i 78

Pretace

[Pape ii] Postel

September 1978
TCP-4

Preface

PREFACE

This document describes the funclions to be performed by the internetwork Transmission
Control Program (1CP) and its interface to programs or users that require its services. There
have boen four previous TCP specifications as described in the introduction. The present text
draws borrows heavily from them,

Allhouph the list of participants in the TCP work is very long (see [CEHKKS77] - the final
Stanford University TCP project reporl), special acknowledgments are due to R. Kahn, R
Tomlinson, Y. Dalal, R, Karp and C. Sunshine for their active participation in the design of TCP.

The version 3 specification was influenced by many people, but special mention should be
mace of of the work al MIT's Laboralory for Computer Science on the Data Stream Protocol
{DSP) by Dave Clark and Dave Reed. Many of the specific changes were first described by Ray
Tomlinson of BBN [Temlinson77). The final document benefited from the comments of the
following reviewers: Michael Padlipsky, Carl Sunshine, John Day, Gary Grossman, and Ray
Tomlinson.

This revised edilion of the version 4 specification was influenced by the comments of the
following: Vint Cerf, Dick Watson, Carl Sunshine, Danny Cohen, Dave Clark, John Day, Gary
Grossman, Jim Mathis, Gill Plummer, Jack Haverty, and the whole TCP Working Group.

Fostel [Page iii]

September 1978

IEN:55

Section: 2.4.2.1

Replaces: IENs 44, 40, 27, 21,5

Transmission Control Protocal

Version 4

1. INTRODUCTION

The Transmission Conlrol Protocol (TCP) is intended for use as a highly reliable host-to-host
protocol between hosts in packet-switched computer communication networks, and especially in
interconnected systems of such networks.

This document describes the functions to be performed by the internetwork Transmission
Control Protocol (TCP), the program that implements it, and its interface to programs or users
thal require its services.

1.1. History

There have been four previous TCP specifications: The first [CD574] defined version 1 of
TCP. A second [PGR76a] was wrillen for the Defense Communications Agency in
connection with its AUTODIN Il project. The third [Cerf77) defined version 2, for use in
the ARPA internetwork research projects. The fourth [CP78] defined wversion 3, a
refinement of version 2.

The AUTODIN Il version differed from the original version in the following ways:

Specification of a resynchronization mechanism was included, and fields for security and
priorily, which were known requirements of AUTODIN Il, were added.

The first internet version {version 2) differed from the original version in the following ways:

A different resynchronization procedure was introduced; an "option" field was defined
for the TCP header to accommodate not only security and priority but other special
features concerned with, for example, segment speech services, diagnostic timestamping,
and so on,

Version 2 eliminated all error messages but for RESET, and thus simplified the header
formal. There are still many local errors which can be reported to the user, but none of
these need cross the network(s) between TCP’s.

Connection closing was slightly more elaborate in Version 2 than in version 1 because the

Postel [Page 1]

September 1978
TCP-4

Introduction

FIN signals had to be acknowledged. Furthermore, the INT and FIN facilities no longer
caused flushing of the data slream. (A scparale "flush" facility was tested, but
climinaled in the end.) Dealing with flow-control windows that have gone to zero was a
ncw fealure of version 2, and, finally, the reassembly of fragments into segments was
more carefully specified.

In version 3 TCP furlher evolved. The primary changes from version 2 were as follows:

The resynchronization mechanism was eliminated in favor of a quiet period on
initialization of the TCP. g

Buffer management and letlers boundaries were more tightly coupled associated by the
coupling of the end of letter flag to a receive buffer size.

The interrupt signal was eliminated in favor of an urgent pointer.

A furlher separation of the internet and TCP specific information in the segment format
was achioved.

Version 4 TCP specified here has the following changes:

The TCP now expects to call on a lower level protocol module in the host for certain
funclions; in the general internetwork case, TCP expects the lower level module to

" implement the ARPA Internetwork Protocol [Postel78d] or something functionally
cquivalent to it.

Addressing information necessary to reach a specific TCP implementation is expected to
be carried on the lower level prolocol.

Frapmentation and reassembly have been eliminated from TCP and made the
responsibility of the lower level protocal.

1.2, Scope

The TCP is inlended to provide a reliable process-to-process interprocess communication
service in a mullinetwork environment. The TCP is intended o be a hosl-to-host protocol in

common use in mulliple networks.
1.3. Other Documentation

For other documentaltion, see lhe items cited in the Histery Section (1.1) and the items
listed in the Bibliography:.

[Page 2] Postel

September 1978
TCP-4

Introduction

1.4. Interfaces

The TCP inlerfaces on one side to application processes and on the other side to a
transmission protocol such as Internetwork Protocol [Postel78d].

The interface between an application process and the TCP is illustrated in reasonable detail.
This interface consists of a set of calls much like the calls an operating system provides to
applicalion process for manipulating files. For example, there are calls to open and close
connaclions and to send and receive letters on established connections, It is also expected
that the TCP can asynchronously communicate with application programs via events.

The inlerface between TCP and a transmission protocol is essentially unspecified except that
il i= assumed there is 8 mechanism whereby the two can pass information to each other

such as evenls.
1.5. Operation

Several basic assumplions are made about process-to-process communication; these are
lisled here without further justification. The interested reader is referred to [CK74,
Tomlinson74, Belsnes74, Dalal7d4, Dalal?75, Sunshine76a, CEHKKS77] for further

discussion,

HOS5Ts are compulers allached to a network, and from the- communication network’s point
ol view, are lhe sources and destinations of messages. PROCESSes are viewed as the active
clements of all host compulers in a network (in accordance with the fairly common
definition of a process as a program in execulion). Even lterminals and files or other |/O
media are viewed as communicating through the use of processes. Thus, all network
communication is viewed as inter-process communication.

Since a process may need lo distinguish among several communication streams between
ilsclf and anolher process (or processes), we imagine that each process may have a number
of PORTs through which It communicales with the ports of other processes.

Since port names are selected independently by each operating system, TCP, or user, they
may nol be unique. To provide for unique names at each TCP, we concatenate an internet
ADDRESS specific {o the TCP level with a port name to create a SOCKET name which will ba

unique throughout all networks connecled together.

For cxample,
Network = ARPANET (number 12},
Host = ISI-TENEXA (imp 22, host 1),
Port = FTP-Server (port 3}

or
BEBB1816--BE810110-00E0EREERRAERE] -PEBEREBEERERER11

Postel g [Page 3]

September 1978
TCP-4

Introduction

A pair of sockels form a CONNECTION which can be used to carry data in either direction
{i.o, "ull duplex”). The connection is uniguely identified by the <local socket, foreign
sockel> address pair, and the same local socket name can participate in multiple
connoclions to differenl foreign sockels.

Processes exchanpe finite lenglh LETTERs as a way of communicating; thus, letter
boundarics might be significant in some process-to-process communications. However, the
length of a leller may be such thal it must be broken into SEGMENTs before it can be
transmilted to its destination. We assume thal the segments will normally be reassembled
into a leller before being passed to the receiving process. A segment may contain all or a
part of a lelter, but a segment never contains parts of more than one letler.

Furlhormore, there is no restriction on the length of a letter. A connection might be formed
o send a single long leller (a stream of byles, in effect).

There is, however, a coupling between letlers as transmilled and the use of buffers of data
thal cross the TCPfuser interface. Each time an end of letter (EOL) signal is associated
with data placed into the receiving user’s buffer, the buffer is returned to the user for
processing even if the buffer is nol filled.

Wr specifically assume thal segments are transmilted from host to host through means of a
PACKET SWITCHING NETWORK (PSN) [RW70, Pouzin73]. This assumplion is probably
unnceessary, since a circuit switched nelwork or a hybrid combination of the two could also
be uscd; but for concreteness, we explicitly assume that the hosts are connected to one or
more PACKET SWITCHES [PS] of a PSN [HKOCW70, Pouzin74, SW71]

Processes make use of the TCP by handing it letlers (or buffers filled with parts of a letter).
The TGP breaks these inlo segments, if necessary, and then embeds TCP segment in an
INTERNET SEGMENT. FEach internet segment is in turn embedded in a LOCAL PACKET
suilable for transmission from lhe hosl to one of its serving PSs. The packet switches may
perform further formatling, fragmentation, or other operations to achieve the delivery of the
local packel to the destination host.

The term LOCAL PACKET is used generically here to mean the formatted bit string
exchanped belween a host and a packet switch. The format of bit strings exchanged
belween the packet swilches in a PSN will generally not be of concern to us. If an
inlernelwork segment is destined for a TCP in a foreign PSN, the local packet is routed to a
paloway which connccts the originaling PSN with an intermediate PSN or with the
destinalion PSN. Routing of internetwork segment to the gateway may be the responsibility
of lhe source TCP or the local PSN, depending upon the PSN services available.

The model of TCP operation is that there is a basic gateway (or internet protocol module)
aseocialed wilh cach TCP which provides an interface to the local network. This basic
paloway performs routing and segment reformatting or embedding, and may also implement
conpestion and error control between the TCP and gateways at or intermediate to the
destlination TCP.

[Page 4] Pastel

September 1978
TCP-4

Introduction

At a pateway between networks, the internet segment is "unwrapped” from its local packet
formal and examined lo determine through which netlwork the internet segment should
travel nexl. The internet segment is then "wrapped” in a local packet format suitable to
tho next nelwork and passed on to a new packel switch.

A paleway is permilled to break up an internet segment into smaller FRAGMENTS if this is
necessary for transmission through the next network. To do this, the gateway produces a
sel of internet packets, each carrying a fragment. Fragmenis may be broken into smaller
ones al intermediate gateways. The internet packet format is designed so that the
deslinalion galeway can reassemble fragmenls into internet segments. Segments, of course,
can be reassembled into letters by the destination TCP.

The TCP is responsible for repulaling the flow of TCP segments to and from the processes it
serves, as a way ol preventing its host from becoming saturated or overloaded with traffic.
The TCP is also responsible for refransmitting unacknowledged segments and for detecting
duplicales. A conscquence of this error detection and retransmission scheme is that the
order of letlers received on a given connection can also be maintained [CK74,5unshine75].
To perform these functions, the TCP opens and closes connections between ports.

Postel ' [Page 5]

September 1978

TCP-4
Philosophy

[Page 6] Faostel

September 1978
TCP-4

Philosophy

2. PHILOSOPHY
2.1. Related Work

Some work that at one point was closely related is the definition of a Transport Protocol by
the Internation Network Working Group [CMSZ78] '

2.2. Mcchanisms Explained

The key idea of TCP is thal processes exchange letters via connections. TCP utilizes many
mechanisms to provide this service.

Processes are supporled by the host operating system.

Letlers are supporied by the reliable {ransmission of TCP segments containing beginning
and end of letler flags. Transmission is made reliable via the use of sequence numbers
and acknowledgmenis,

Connections are supported via procedures to establish and clear connection. These
procedures ulilize the synchronize (SYN) and finis (FIN) control flags and involve a
lhree-way hand shake. Connections are identified by pairs of addresses that include port
identifiers, Such address are called sockets to stress that fact.

Lellers

A leller is a sequence of one or more successive octets (8-bit bytes) on a TCP
connection. The beginning of a letler is marked by a BOL control flag in a segment. The
end of a letter is marked by the appearance of an EOL control flag in a segment. A letter
is the minimum unit of information which must be passed from a receiving TCP to a
receiving: process. A TCP may pass less information to the receiving program; but when
a TCP has a complete letter, it must not wait for more data from the remote process
belore passing the letter to the receiving process if the receiving process is ready to

accepl it.

The TCP as a Posl Office

The TCP acts in many ways like a postal service since it provides a way for processes to
exchange letlers wilh each other,

Il someclimes happens that a process may offer some service, but not know in advance
what ils correspondenls’ addresses are. The analogy can be drawn with a mail order
house which opens a post office box which can accept mall from any source. Unlike the
posl box, however, once a letter from a parlicular correspondent arrives, the resulting
conncction becomes specific to the correspondents until the correspondents declare
olherwise--thus making the TCP more like a telephone service. Without this
particularization, the TCP could not perform its flow control, sequencing, duplicate
deteclion, end-lo-end acknowledgmenl, and error control services.

Postel : [Page 7]

September 1978

TCP-4
Philosophy

Well-Known Sockels

Well-known sockels are a convenient mechanism for a priori associating a socket name
with a standard service. For instance, lhe "telnet-server” process might be permanently
assipned to a parlicular socket, and other sockets might be reserved for File Transfer,
Remole Job Entry, text generalor, echoer, and sink (the last three being for test
purposes). A sockel name might be reserved for access to a "look-up" service which
would return the specific socket at which a newly created service would be provided.

For compatibilily with ARPANET socket naming conventions, we refer to the list of
assigned sackets in RFC 739 [Postel77]

TCP implementors should note, however, that the gender and directionality of NCP
sockels do not apply to TCP sockels, so that even numbered as well as odd ones can
serve as well-known sockels,

Sockels and Addressing

We have borrowed the term SOCKET from the ARPANET terminology [CCC70, FP78]
In general, a sockel is an internelwork ADDRESS including a PORT identifier. A
CONMNECTION is fully specified by the pair of SOCKETS al each end since the same local
sockel name may parlicipale in many connections to diHereni foreign sockets.

Once the conneclion is specified in the OPCEN command the TCP supplies a (short) local
connection name by which the user refers to the connection in subsequent commands.
A<« will be seen, this facililates using conneclions with initially unspecified foreign sockets.

TCP's are free to associate porls with processes however they choose. However, several
bazic concepls seem necessary in any implementation. There must be well-known
sockels which the TCP associates only with the "appropriate” processes by some means.
We envision that processes may "own" sockets, and that processes can only initiate
connections on the sockets they own. (Means for implementing ownership is a local
issue, bul we envision 2 Request Port user command, or a method of uniquely allocating
a proup of ports to a given process, e.g., by associating the high order bits of a port
name wilh a given process.)

Once initiated, a conneclion may be passed to another process that does not own the
local socket (ep., from "logger" to service process). Strictly speaking, this is a
reconnection issue which might be more eleganlly handled by a general reconnection
protocol as discussed below. To simplify passing 2 connection within a single TCP
"invisible” switches are be allowed.

Of course, each connection is associaled wilh exactly one process, and any attempt lo
reference that connection by another process should be treated as an error by the TCP.
This prevenls anothor process from stealing data from or inserting data into another
process’ data stream, and also prevents masquerading, spoofing, or other forms of

[Page 8] Postsl

September 1978

Postel

TCP-4
Philosophy

malicious mischief {(piven a correct implementation of TCP in a protective operating
syslem environmont). :

A conneclion is "inilialed” by the rendezvous of an arriving internetwork segment and a
waiting Transmission Control Block {TCB) created by a user QPEN, SEND, URGENT, or
RECEIVE command. The matching of local and foreign socket identifiers determines
when a successful connection has been initiated. The connection becomes “established"
when sequence numbers have been synchronized in both directions.

It is possible to specify a socket only partially by setiing the PORT identifier to zero or
setting both the TCP and PORT identifiers to zero. A socket of all zero is called
UNSPECIFIED. The purpose behind unspecified sockets is to provide a sort of "general
delivery™ facility (useful for processes offering services on "well-known" sockets).

There are bounds on the degree of unspecificity of socket identifiers. TCB's must have
fully spocified local sockels, although the foreign socket may be fully or partly
unspecified. Arriving segments musl have fully specified sockels.

We employ the following notation:

x.y.z = fully specified socket with x=net, y=TCP, z=port
¥.v.u = as above, but unspecified port

x.u.u = as above, but unspecified TCP and port

u.uu = complelely unspecified

with respect to implementation, u = 0 [zero]

We illustrate the principles of matching by giving all cases of incoming segments which
malch with existing TCB's. Generally, both the local sockel field of the TCB and the
destination socket field of the arriving segment must match, and the foreign field of the

TCB and the source socket field of the arriving segment must match.

Bl il s Hn il e s st el Lt T E T,

! ! 1CB ! segment !
ICASE ! local ! foreign ! source ! dest |
s Sttt 4 ——mmmee $ m—————— + —————— +
! (a) ! a.b.c ! e.f.g ! e.f.g ! a.b.c !
' ! ab.e ! efu ! e.f.g ! a.b.c !
! 1':] ! a.b.c ! il U i Elflg ! a.b.c !
! {) ! asbe | uwuwu ! e.f.g ! a.bic !
e o e e e e et e ———————— +

Case {(d) is

lypical of the ARPANET well-known socket idea in which the well known socket {a.b.c)
LISTENS for & conneclion from any {uuu) sockel. Cases (b) and (c) can be used to
restricl malching to a particular TCP or net. More elaborate masking facilities could be

[Page 9]

September 1978

TCP-4
Philosophy

implemented without adverse effects, so this matching facility could be considered the
minimum acceptable for TCP operation,

23, Functional Specification of Interfaces

The following diagram illustrates the place of the TCP in the protocol hierarchy:

fomm——— 4 fmm——— 4 om———— + e 4
ITelnet! ! FTP | Yoice! ... ! |
fmmm—— 4 hmm——— R | e +
| | | !
e n i b R
| TCP ! IRTP !} ... ! !
Fomm—= + fmm———— + e £
| ! |
s
! Internet Protocaol !
o +
!
e s ———————— -+
! Local Metuork Protocol- !
o mm e —————— e e +

Protocol Relationships
Figure 1.

It is expccted that the TCP will be able to support higher level protocols efficiently. It
should be easy lo interface ‘existing ARPANET protocols like TELNET [FP78] and FTP

[FP78] to the TCP.
2.4. Problems Remaining
Major Points
A real formal specification is needed.
The protocol must be verified.

Technical Issuas

[Pape 10] Postel

September 1978

25. Lessons Learned

e

2.6. Fulure Directions

2P

Postel

TCP-4
Philosophy

[Page 11]

September 1978

TCP-4
Specification

[Page 12] Postel

September 1978

TCP-4

Specification

3. SPECIFICATION

3.1. Formalisms Explained

The malerial in the following section by no means qualifies as a formal specification, but it is
a close as we have on hand. First is a slale diagram of the connection opening and closing
sequences, followed by a description of the action to be taken when is state x and event v
occurs for the expected combinations of x and y.

3.2. Formal Specificalion

The opening and closing of a connection progresses through a series of states as shown in
the figure 2.

TCP Coenncclion State Transilions

Postel

The stale diagram in figure 2 only illustrates state changes (and actions which occur as a
resull), but addresses neither error conditions nor actions which are not connected with
stale changes. In lhis section, more delail is offered with respect to the reaction of the
TCP lo various evenls (user command, segment arrivals). The characterization of TCP
processing of conlrol segments and reaction to user commands is relatively terse.
Certain implementation choices can make the realization of .the specified processing fairly
compacl. For the sake of compactness, this section deliberately avoids much explanatory
material which can be found in the implementation sections. Thus, this section is
intended more es a reference than as a tutorial.

Furlhermore, it should be kepl in mind that some conlrol information occupies sequence
number space along with data. This latter point means that there is a natural order in
which o process the data and control portions of an incoming segment and that certain
controls will change the connection state BEFORE later control or data {l.e., those
assigned higher sequence numbers) are processed. An implementation could take
advantage of this sequencing to keep track of which portions of 2 segment (data and
control) had already been processed, Note that by assigning sequence numbers to some
conlrol bits, it is possible o use the normal acknowledgment mechanisms to acknowledge
receipl of control information and to filter out duplicates.

A natural way to think about incoming segment processing is to imagine that they are
firs! tested for proper sequence number (ie., that their contents lie in the range of the
expecled “receive window" in the sequence number space) and then that they are
queued and processed in sequence number order. We are, in this view, ignoring for the
momenl the problem of reassembling segments that overlap other, already received,
segmenls,

[Page 13]

September 1978
TCP-4

Specification

CLOSED
CLOSE
1 Delete TCB
OPEN CLOSE
Create TCB Delete TCB
¥
OPEN
Rey SYH SEND or LRG
Sncl SYN, ACK nd SYN
> _Boy SYN 3
SYN Snd ACK SYN
RCYD SENT
% = - _Bev SYN.ACK
CLASE. | estas'd) Snd ACK
Snd FIN
— Ll O5e Bov FIN
‘ Snd FIN Snd ACK
FIN CLOSE
LATT WAIT
~Bey FIN > - —LCLOSE
Snd ACK CLOSING Snd FIN
Bow ACK of FIN ~timeout
Delete TCB ABORT

TCP Connection State Diagram
Figure 2.

We have chosen to organize the description according to the connection state, to key the
descriplion to figure 2. In the following specifications the user events are mutually
exclusive, while the incoming segment may call for some or all of the steps described to
be carried oul. When a segment causes a state change, but carries more data or control
which should bo processcd, it is appropriale to continue processing in the new state, but

[Page 14] Postel

September 1978
TCP-4

Specification

processing of the segment’s acknowledpment field or sequence number field should not
be repealed (lest a segment which looked valid before sppear to be an old duplicate or
have a bad acknowledgmenl field as an artifact of the state change).

A TCP must typically maintain certain state information about each connection in order to
sequence segments. The following abbreviations are used in the action summaries below:

BLIF.SIZ - buller size

LFT.5FEQ = lefl sequence

RCV.SEQ - receive sequence
RCV.WND - receive window

SELGACK - segment acknowledgement
SEGLEN - scgment length

Sl G.SEQ - sepment sequence
SMD.SEQ - send scquence

SNDWND - send window

UHG.PTR - urgen! pointer

The Glossary contains a more complete list of terms and their definitions.

L, SEND MINDOW e

e sent, but un-ACKed ; REERE B
L ff/ffffA
LEFT SEQUENCE SEND SEQUENCE

e RECEIVE WINDOW ——

T‘ RECEIYE SEQUENCE

Sequence Number Management

Figure 3.

Postol [Fage 15]

September 1978
TCP-4
Specification

For concreleness error responses are given in terms of the model user interface
described in detail in section 3.6, where the error information is reported via TCP-to-user
messapes called evenls, User commands referencing connections that do not exist
receive "conneclion not open” (EP3) and references to connections not accessible to the
caller receive "connection illegal for this process” (EP1). We have not repeated these
poncric responses in each description of action performed for each connection state.
Overl allempls to SEND or signal URGENT on a connection with unspecified foreign
socke! result in a "foreign socket unspecified" (ES) response.

Please nole in the following thal all arithmelic on sequence numbers, acknowledgment
numbers, windows, etcelra is modulo 24432 the size of the sequence number space.
Also nole that "<=" means less lhan or cqual io.

CLOSED STATE (i.e., connection does nol exist)
User Commands
1. OPEN

Creale a new franmsmission conirol block TCB fo hold connection state
information. Fill in local socket identifier, foreign socket if present (the
connection is passively "listening” if the foreign socket is unspecified), and user
timeoutl information. Some implementations may issue SYN segments if the
foreign socket is fully specified. In this case, an initial sequence number (ISN) is
sclected and a SYN segment formed and sent. The LFT.SEQ is set to ISN, the
SNDLSEQ to ISN + 1, and SYN-SENT slate is entered.

i lhe caller does nol have access to the local socket specified, return
"connection illegal for this process." (EPL). If there is no room to create a new
connection, return "insufficient resources” (4).

2. SEND, URGENT, CLOSE, ABORT, RECEIVE, STATUS
Error return "Connection nol open” {EP3).

If the user should no have access to such a connection, "connection illegal for
this process” (EP1) may be returned.

Incoming Sepments.

All dala in incoming scgmenls is discarded. An incoming segment containing a RST
is discarded. An incoming segment containing an ACK (and no RST) causes a RST
to be sent in response,

Such a RST response has. its sequence number set to the wvalue of the
acknowledgment field of the incoming segment; its acknowledgment field is set to

[Page 16] Postel

September 1978

Pastel

TCP-4

Specification

the sum of sequence number and the segment length of the incoming segment, and
its RST and ACK control bits are set. See figure 11 for an example.

OPEN STATE

User Commands

OPEN

Return "already QPEN" (EPG)

SEND or URGENT

Select an ISN, send a SYN segment, set LFT.SEQ to ISN and SND.SEQ to ISN +
1. Enter SYN-SENT state. Data associated with SEND may be sent with SYN
segment or gueued for transmission after entering ESTABLISHED state.
URGENT can be sent as a combination SYN, URG segment. If there is no room
to queue the request, respond with "insufficient resources” (4).

RECEIVE
Queue reques! if there is space, or respond with "insufficient resources” (4)

CLOSE

Delete TCB, return "ok" (0). Any outstanding RECEIVES should be returned
with "closing” responses (P12).

ABORT

Delete TCB, relurn "ok" (0} any outstanding RECEIVES should be returned with
"conncelion reset” (P14) responses.

STATUS

Return slale = OPEN.

Incoming Segmenls

ACK

Any acknowledgment is bad if it arrives on a connection still In the OPEN state.
A resel (RST) segment should be formed for any arriving ACK-bearing segment,
excepl anolher RST. The RST should be formatted as follows:

<SEQ SEG.ACK><RST><ACK SEG.SEQ+SEG.LEN>

Thus, the RST will acknowledge any text or control in the offending segment.

[Fage 17]

TCP-4

Specification

September 1978

2. 5¥N

RCV.5EQ should be set to SEG.SEQ + | and any other control or text should be
queued for processing laler. ISN should be selected and a SYN segment sent of
the form:

<SEQ ISN><SYN><ACK RCV.SE(}>

SND.SEQ should be set to ISN + 1| and LFT.SEQ to ISN. The connection state
should be changed to SYN-RECEIVED. MNole that any other incoming control
(combincd with SYN) will be processed in the SYN-RECEIVED state. Processing
of SYN and ACK should not be repeated.

Other tex! or conlrol

Any olher control or text-bearing segment {not containing SYN) will have an ACK
and thus will be discarded by the ACK processing. An incoming RST segment
could not be valid, since it could not have been sent in response to anything
sent by this incarnation of the connection.

SYN-SENT STATE

Liter Commands

OPEN

Return “alrcady OPEN" (EPG)

2. SEND or URGENT

[Pape 18]

Queue for processing afler the connection is ESTABLISHED or segmentize,
slarling with the current SND.SEQ number, Typically, nothing can be sent yet,
anyway, because the send window has not yet been set by the other side. If no
space, return "insufficient resources” (4).

RECEIVE

Qucue for later processing unless there is no room, in which case return
“insufficicnt resources” (4).

CLOSE

Delete the TCB and refturn “closing” (P12) responses to any queued SENDs,
RECEIVES, or URGENTs.

Postel

g

September 1978

Poslel

TCP-4

Specification

5. ABORT

Delete the TCB and return "reset" (Pl4) responses to any queued SENDS,
RECEIVES, or URGENTs.

6. STATUS

Return state = SYN-SENT; SND.SEQ, RCV.WND.

Incoming segments

1.

ACK

i LFT.SEQ =< SEG.ACK <= SND.SEQ then the ACK is acceptable. LFT.SEQ
should be advanced lo equal SEGACK, and any segment{s) on the
relransmission queue which are thereby acknowledged should be removed.

If the scgment acknowledgment is not acceptable, a RST segment should be
formed {except when the offending segment is also a RST) which carries the
SEG.ACK as a sequence number, and acknowledges all text and control of the

offending scgment.
SYN

RCV.SEQ should be set to SEGSEQ + | and any segment text or control
queved for later processing. [If the segment has an ACK, change the connection
stale to ESTABLISHED, otherwise enter SYN-RECEIVED. In any case, form an

ACK segment:
<5EQ SND.SEQ=<ACK RCV.SEQ>
and send il
RST
Notify user, delele TCB, enter CLOSED state.

Other text or control.

Incoming segments with other control or text combined with SYN will be
processed in SYN-RECEIVED or ESTABLISHED state. Arriving segments which
do not contain SYN are old duplicates, Since these must contain ACK fields,
lhey will have been discarded by earlier ACK processing.

User Timeout.

If the user timeout expires on a segment in the retransmission queue, abort the
connection, notifying the user “retransmission timeout, connection aborted”

[Page 19]

TCP-4

Specification

September 1978

(EP9), and flushing all queues, returning RECEIVES, SENDS or URGENTs with
the same error (EP9). Delete the TCB. :

SYN-RECEIVED STATE

User Commands

15

[Page 20]

OPEN
Return "already OPEN" (EPG)
SEND or URGENT

Queue for laler processing after entering ESTABLISHED state, or segmentize and
qurue for output. If no space to queue, respond with "insufficient resources"
(4)

RECEIVE

Queue for processing after entering ESTABLISHED state. If there is no room to
queue this request, respond with "insufficient resources” (4).

CLOSE

Queue for processing after entering ESTABLISHED state or segmentize and send
FIN sepment. If the latter, enter FIN-WAIT stale.

ABORT
Delete TCB, send a RST of the form:
<SE(Q SND.SEQ><RST><ACK RCV.SEQ=

and relurn any unprocessed SENDs, URGENTs, or RECEIVEs with "reset” code
(P14},

STATUS

Return state = SYN-RECEIVED, LFT.SEQ, SND.SEQ,
SNOWND, RCV.SEQ, RCV.WND, and other desired statistics number of (SEND,
RECEIVE buffers queued), segments gueued for reassembly, for retransmission,
ele.

Pastel

Seplember 1978

Postel

TCP-4

Specification

Incoming Segments

1. Check sequence number

There are four cases for the acceptability test for an incoming segment:

Segment Receive Test
Lenglh Window

0 0 SEGSEQ = RCV.SEQ
0 >0 RCV.SEQ <= SEG.SEQ < RCV.SEQ+RCV.WND

=0 ¢ nol acceptable
>0 >0 RCV.SEQ < SEG.SEQ+SEG.LEN <= RCV.SEQ+RCV.WND
If an incoming segment is not acceptable, form a reset {RST) segment:
<SEQ SEG.ACK><RST><ACK SEG.SEQ+SEG.LEN>

If the incoming segmenl is RST or has no ACK, discard it, and do not send RST
formed above. Note lhal the test above guarantees that the last sequence
number used by the segment lies in the receive-window. The special "MAX"
opcralion makes cerlain thal empty ACK scgments, whose length are 0, will be
accepled. If the RCV.WND is zero, no segments will be acceptable, but special
allowance should be made to accept valid ACKs.

There is one other case: If the incoming segment is a SYN and it has the same
value as the SYN which starled this connection, then it is a delayed duplicate
and should be acknowledged even if it fails the normal test.

. ACK

If LFT.SEQ < SEGACK <= SNDSEQ then set LFT.SEQ = SEGACK, remove
any acknowledged segmenls from the retransmission queue, and enter
ESTABLISHED stale,

If the segment acknowledgment is not acceptable, form a reset segment, as for
the bad sequence case above, and send it, uniess the incoming segment is an
RST, in which case, il should be discarded.

: HST

If lthe segment has passed sequence and acknowledgment tests, it is wvalid.
Return this connection to OPEN state. The user need not be informed. All
segments on the retransmission queue should be removed. All segmentized

[Page 21]

TCP-4

Specification

September 1978

buffers must be assigned new sequence numbers, so they should be requeued
for re-segmentizing.

Other text or control

Il there is other control or text in the segment, it can be processed when the
conneclion enfers the ESTABLISHED state.

User Timeout

If the user timeout expires on any segment in the retransmission queue, flush all
gqueues, relurn outstanding SENDs, URGENTs or RECEIVEs with "user timeout,
connecclion aborted” {EF9), and delete the TCE.

ESTADLISHED STATE

User Commands

[Pape 22]

1.

OPEN
Respond with "already OPEN" (EPG)
SEND or URGENT

Segmenlize the buffer, send or queue it for outpul, send a piggy-backed
acknowledpment {acknowledgment value = LFT.SEQ) with the data (this is not
requircd, bul there Is no advantage in not doing so} If there is insufficient
space to remember this buffer, simply respond with “insufficient rescurces”

(4).

If remole buffer size is not one octet; then, if this is the end of a letter, do
end-of-letler fbuffer-size adjusiment processing.

Let 1SS be the initial send sequence number used on this connection, 0SS be
the send scquence before sending this segment, NSS the send sequence after
sending this segment, RB be the remote buffer size, and L the number of
octels in this segment. Then:

if EOL = B then NSS = 0SS + L

if EOL = 1 then NSS = ISS + i « RB

where | is the minimum integer that satisfies:
IS5 + (i-1)%RB < 0SS + L <= IS5 + i%RB

Set SND.SEQ = NSS.

Postel

September 1978

Postel

TCP-4
Specification

3. RECEIVE

Reassemble queued incoming scgments into receive buffer and return to user.
Mark "end of letler” (EOL) if this is the case.

If insufficient incoming segments are queued to satisfy the request, queue the
request. If there is no queue space to remember the RECEIVE, respond with

"insullicient resources™ (4).

When data is delivered to the user that fact must be communicated to the
sender via an acknowledgmont.

Let E be the sequence number of lhe last octet of data delivered into the users
buffer. Then an acknowledgment with <SEQ SND.SEQ=<ACK E>. This does not
have to be sent as a scparate segment, but rather should be plggy-backed on a
data sepment if possible withoul incuring undue delay,

If the data delivered to the use included an end of letter, and the buffer size is
not 1; then the acknowledpment sent should take into account the
end-of-lelter /buffer-size sequence number adjustment.

Let IRS be the initial receive sequence number on this connection, LB be the
local bulfer size, and NES be the next expected sequrnce number.

if not EOL then NES = E + 1
if EOL then MWES = IAS + ivlB

vhere 1 is the minimum integer that satisfies:
IRS + (i-1)#lB < E + 1 <= IRS + iwlB

Send the acknowledgment <SEQ SND.SEQ><ACK NES>.

. CLOSE
Quecue this until all preceding SENDs or URGENTs have been segmentized, then
form a FIN segment and send il. In any case, enter FIN-WAIT state.

. ABORT

Delete 1CB and send a reset scpment:
<500 SND.SEQ=<RST=<ACK RCV.SEQ>

All queued SENDs, URGENTs, and RECEIVEs should be given “"reset" responses
(P14); all segments queued for transmission (except for the RST formed above)

or relransmission should be flushed.

[Page 23]

TCP-4

Specitication

September 1978

6. STATUS

Return slate = ESTABLISHED; SND.SEQ, LFT.SEQ,
SND.WND, RCV.SEQ, RCV.WND, and other statistics, as desired.

Incoming Segments

[Pape 24]

1. Check sequence number

Scgmenls are processed in sequence. Initial tests on arrival are used to discard
old duplicates, but further processing is done in SEG.SEQ order. If a segment’s
contents slraddle the boundary between old and new, only the new parts should
be processed. :

There are four cases for the acceptability test for an incoming segment:

Segment Receive Test
Lenglh Window

0 0 SEG.SEQ = RCV.SEQ

0 >0 RCV.SEQ <= SEG.SEQ < RCV.SEQ+RCV.WND

=0 0 nol acceplable

>0 >0 RCV.SEQ < SEG.SEQ45EG.LEN <= RCV.SEQ+RCY.WND

If an incoming segment is not acceptable, an acknowledgment should be sent in
reply:

<SEQ SND.SEQ><ACK RCV.SEQ>

In any case, unacceptable segments should be discarded.

. ACK

If LFT.SEQ < SEGACK <= SND.SEQ then set LFTSEQ = SEGACK. Any
segments on the retransmission gqueue which are thereby entirely acknowledged
are removed. Users should receive posilive acknowledgments for buffers which
have been SENT and fully acknowledged (i.e, SEND buffer should be returned
with "OK" (0} response). If the ACK is a duplicate, it can be ignored.

If the remole buffer size is not 1, then the end-of-letter /buffer-size adjustment
fo scquence numbers may have an effect on the next evpected sequence
number to be acknowledged. It is possible that the remote TCP will
acknowledpe with a SEGACK equal to a sequence number of an octet that was

Postel

September 1978

Postel

TCP-4

Specification

skippced over al the end of a leller. This a mild error on the remote TCPs part,
but not cause for alarm.

. RST

All pending RECEIVEs, SENDs, and LURGENT: receive "reset” (P14) responses.
All scgment queues are flushed. User also receives an unsolicited general

"resel” signal (P14). Enter the CLOSED state.

. SYN

The segment sequence number must be in the receive window; if not, ignore the
segment, If the SYN is on and the segment sequence and the receive sequence
are equal, then everything is ok and no action is needed; but if they are not
equal, lhere is an error and a resel must be sent.

If a resel must be sent it is formed as follows:
<GEQ SEG.ACK> <RST> <ACK SEG, SEO+5SEG. LEN=

The connection must be aborted as if a RST had been received.

. URG

Signal user that remote side has urgent data (P11} if the urgent pointer is in
advance of the data consumed. If the user has already been signalled (or is still
in the "urgent mode") for this continuous sequence of urgent data, do not

sipnal the uscr again,

. Segment texl

Once in the ESTABLISHED state, it is possible to deliver segment text to user
RECEIVE buffers. Text from segments can be moved into buffers until either
the buffer is full or the segment is empty. If the segment empties and carries
an EOL flag, then the user is informed, when the buffer is returned, that an EOL

has becn received.

If buffer size is not one oclot, then do end-of-letter/buffer-size adjustment
processing.

Let IRS be the initial receive sequence number used on this connection, ORS
be the receive sequence before receiving this segment, NRS the receive
sequence afler receiving Lhis segment, LB be the local buffer size, and L the

number of oclels in this segmenl. Then:

it EOL = 8 then NRS = DRS + L

[Page 25]

September 1978
TCP-4

Specificalion

if EOL = 1 then NRS = IRS + i = LB
there | is the minimum integer that satisfies:
IRS + (i-1)%lB < ORS + L <= IRS + ixlB
Set RCV.SEQ = NRS.
7. FIN

An ACK scgment should be sent, acknowledging the FIN. The user should be
signalled "connection closing” (F12), and similar responses should be returned
for any oulstanding RECEEs which cannot be satisfied. Connection state

should be changed to CLOSE-WAIT. MNote that FIN implies EQOL for processing
any scgment text not yvel delivered to the user.

8. Uzer Timeout

If the user timeout expires on a segment in the retransmission queus, flush all
queues, return “user fimeout, connection aborted” (EP3) for all outstanding
SENDs, URGENTs, and RECEIVEs, and delete the TCB. The user should receive
an unsolicited message of the same form (EP3).

FIN-WAIT STATE
Uscr-Commands
1. OPEN
Return "already OPEN" (EP6)
2. SEND or URGENT
Relurn "connection closing” (EPL12) and do not service request.
3. RECEIVE

Reassemble and relurn a letler, or as much as will fit, in the user buffer. Queue
lhe request if it cannot be serviced immediately.

4. CLOSE

Siriclly spcaking, this is an error and should receive a "connection closing"
{EP12) response. An "ok" (0) response would be acceptable, too, as long as a
sccond FIN is not emitied.

[Pape 26] Postel

September 1978
TCP-4

Specification

5. ABORT
A reset segment (RST) should be formed and sent:
<5EQ SND.SEQ=<RST=<ACK RCV.SEQ>

Outstanding SENDs, URGENTs, RECEIVEs, CLOSEs, andfor segments queued for
retransmission, or segmentizing, should be flushed, with appropriate

"connection reset” (P12).

6. STATUS

Respond with state = FIN-WAIT, SND.SEQ, LFT.SEQ,
SND.WND, RCV.SEQ, RCV.WND, and other statistical information, as dasired.

Incoming segments
1. Check sequence number

If RCV.SEQ <= SEGSEQ + MAX(SEGLEN-10) < RCV.SEQ + RCV.WND
then segmenl sequence is acceptable. Otherwise, if SEGLEN is non-zero, an
ACK segment should be sent:

<5EQ SND.SEQ><ACK RCV.SEQ>

In any case, an unacceptable segment should be discarded.

2. ACK

If LFT.SEQ < SEGACK <= GSNDSEQ, then LFT.SEQ should be advanced
approprialely and any acknowledged segments deleled from the retransmission
queue, SENDs or URGENTs which are thereby completed can also be
acknowledped to the user. ACK's outside of the SNDWND can be ignored. |f
the relransmission queue is empty, the user’s CLOSE can be ackhaw!adgad

("OK" (0)) and the TCE deleted.

3. RST

All RECEIVEs, SENDs, and URGENTs still outstanding should receive "reset"
(P14) responses. All scgment queues should be flushed, and the connection
TCB dcleted. User should also receive an unsolicited general “connection

reset” (P14) signal.
4. SYN

This case should not occur, since a duplicate of the SYN which started -the
currenl incarnation will have been filtered in the SEG.SEQ processing. Other

Postel [Page 27]

TCP-4

Specificalion

September 1978

5YN's could not have passed the SEG.SEQ check at all (see SYN processing for
ESTABLISHED state).

URG

Signal the user that the remote side has urgent data (P11) if the urgent pointer
is in advance of the data consumed. If the user has already been signalled {or is
still in the “urgent mode") for this continuous sequence of urgent data, do not
signal lhe user again.

Segment Text

If there are oulstanding RECEIVEs, they should be satisfied, if possible, with the
text of this segment; remaining text should be queued for further processing. |If
a RECEIVE is salisfied, the user should be nolified, with "end-of-letter” (EOL)

signal, if appropriale.

. FIN

The FIN should be acknowledped. Return any remaining RECEIVEs with
"conneclion closing" (P12) and advise user that connection is closing with a
general signal {(P12). If the retransmission queue is not empty, then enter
CLOSING slate, olherwise, delete the TCB,

. User Timcout

It the user limeoul expires on a segment in the relransmission gueue, flush all
fqueues, return "user limeout, conneclion aborted" messages for all outstanding
SENDs, RECEIVEs, CLOSES or URGENTs, send an unsolicited general message
of the same form to the user, and delete the TCB.

CLOSE-WAIT STATE

Ll=er Commands

[Page 28]

. OPEN

Relurn "already OPEN" error (EP6)

2. SEND or URGENT

Segmentize any lext to be sent and queue for output. If there is insufficient
space to remember the SEND or URGENT, return "insufficient resouces” {4)

Postel

September 1978

3.

TCP-4
Specification

RECEIVE

Since the remole side has already sent FIN, RECEIVEs must be satisfied by text
already reassembled, but not yet delivered to the user. If no reassembled
segmenl text is awaiting delivery, the RECEIVE should get a "connection
closing” (P12} response. Otherwise, any remaining text can be used to satisfy
the RECEIVE. In implementations which do not acknowledge segments until they
have been delivered into user buffers, the FIN segment which led to the
CLOSE-WAIT state will not be processed until all preceding segment text has
been delivered into user buffers. Consequently, for such an implementation, all
RECEIVEs in CLOSE-WAIT sltate will receive the “connection closing” (P12)

response,

CLOSE

Queue lhis request until all preceding SENDs or URGENTs have been
segmentized; then send a FIN segment, enter CLOSING state.

ABORT

Flush any pending SENDs, RECEIVEs and URGENTs, returning “connection
resel” (P14) responses for them. Form and send a RST segment:

<5EQ SND.SEQ><RST><ACK RCV.SEQ>
Flush all segment queues and delete the TCB.

STATUS
Return stale = CLOSE-WAIT, &ll other TCE values as for ESTABLISHED case.

Incoming Segments

L.

Pastel

Check sequence number

If RCV.SEQ <= SEGSEQ + MAX(SEGLEN-1,0) < RCV.SEQ + RCV.WND
then the scgmenl sequence is acceplable. Otherwise, if SEGLEN is non-zero, an

ACK should be senl:

<SEQ SND.SEQ><ACK RCV.SEQ>

Unacceptable segments should be discarded. Others should be processed in
sequence humber order. ;

[Page 23]

TCP-4

Specification

[Pape 30]

September 1978

ACK

i LFT.SEQ < GSEGACK <= SND.SEQ, then LFT.SEQ should be advanced
approprialely and any acknowledged segments removed from the retransmission
queuve. Compleled SENDs or URGENTs should be acknowledged to the user
{"OK" {0} returns), ACK's which are oultside the receive window can be
ignored.

RST

All RECEIVEs, SENDs, and URGENTs still outstanding should receive "resst”
(P14) responses. Segment queues should be flushed and the TCB deleted. The
user should also received an unsolicited general "connection reset" signal
(P14).

SYN

This case should not occur, since a duplicate of the SYN which started the
current conneclion incarnation will have been filtered in the SEG.SEQ processing.
Other SYN's will have been rejecled by this test as well (see SYN processing for
ESTABLISHED state).

LRG

This should not oceur, since a FIN has been recsived from the remote side.
lgnore the URG,

Sepgment lext

Thisz should not occur, since a FIN has been received from the remote side.
lgnore the segment text.

FIN

This should nel occur, since a FIN has already been received from the remote
side. lgnore the FIN.

Lser Timeout

If the user timeout expires on a segment in the retransmission gueue, flush all
queues, relurn "user timeout, connection aborted" (EP9) for any outstanding
SENDs, RECEIVEs or LRGENTs, send an unsolicited general message of the
same form lo the user and delete the TCE.

Fostel

Seplember 1978

TCP-4

Specification

CLOSING STATE

Postel

Liser Commands

1. OPEN

Respond with "already OPEN" (EP5)

. SEND, URGENT

Respond with "connection closing” (EP12}

. RECEIVE

Respond with "connection closing" (EP12)

. CLOSE

Respond with "conneclion closing” (EP12)

. ABORT
Respond with "0K" (0) and delete the TCB; flush any remaining segment
qucues. If a CLOSE command is still pending, respond "connection reset"
{P14).

. STATUS

Return Slale = CLOSING along with other TCP parameters.

Incoming segments

1. Check sequence number

I RCV.SEQ <= GSEGSEQ + MAX(SEGLEN-1,0) < RCV.SEQ + RCV.WND
then segment sequence is acceptable. Otherwise, if SEGLEN is non-zero, an

ACK scgment should be formed and sent:
<5EQ SND.SEQ=<ACK RCV.SEQ>

In any case, an unacceplable segment should be discarded.

. ACK

If LFT.5EQ < SEGACK <= SND.SEQ, then LFT.SEQ should be advanced and
any acknowledged segmenls deleled from the retransmission queue. SENDs or
URGENTs which are thereby compleled can also be acknowledged to the user.
ACK's oulside of the SND.WND can be ignored.

[Page 31]

TCP-4

Specification

Ceptember 1978

3. RST

[Pape 32]

Any oulstanding RECEIVEs, SEND, and URGENTs should receive ‘reset”
responses (P14), All segment queues should be flushed and the TCB deleted.
Uscrs should also receive an unsoliciled general "“connection reset” (P14)
signal,

Segment text or control

No other control or text should be sent by the remote side, so segments
conlaining non-zero SEGLEN should be ignored.

User Timeoul

If the user timeout expires on a segment in the retransmission queue, flush all
queues, return "user limeoul, connection aborted” (EP3) responses for all
oulslanding SENDs, URGENTs, RECEIVEs, or CLOSEs, send an unsolicited
message of the same form (EP9) to the user and delete the TCB.

Postel

September 1978
TCP-4

Specification

3.3. Hecader Format

All internelwork segments (TCP and otherwise) have a basic inlernet header consisting of
source and destinalion addresses, and hcader and total length fields, among others
[Postel78d). A TCP header follows the internet header, supplying information specific to
the TCP protocol. This division allows for the existence of internet protocols other than TCP
and for experimentation with TCP variations.

TCP Header Format

4] 1 2 3

B123456789B81234567898123456789381
B o e e e e e e
! Source Port | Destinatlon Port |
L e e e e N LSS AN I M B ST TN T
! Sequence Number I
R e e e T Nt SN S Y S ST ST W SR S W S Sy
! Acknou |l edgement Number !
R L T e g T TSt S F HESSPRAY S ST SIS G e S S S T SR
! Data !'x x x xH¥IUIAMBIEIRISIF! !

| Difset!x x x xMRICEZFIOISIYITI Window !
l‘\]__/ Ix x x xFRIGIKASLITININI : !
Bt S e o e e Y < S S S WS U IS Y A S T e

! Checksum ! Urgent Pointer !
B s B e e e o St S SEG S SESERE RE S
é ! TCP Options ! Padding !

e e B e e e o e B e e S Y Ml S A S S TS
I

! data
e B e e e U IO T WAL T (NS A TN A S 8

Example TCP Header

Nole thal one tick mark represents one bit position,

the Pithc{u

Figure 4. wdet b Assun ey

Source Porl: 16 bils 13 preceed €he Nyt

The source porl number. . heleq for Checksum

Destination Porl: 16 bits Soulcé &CH(ES.S T Iapeets
The destinalion porl number. c.J(es ky " bew SoUrCe
f | 0 [otd] T domgbh |

Postel [Page 33]

September 1978
TCP-4

Speccification

Sequence Number: 32 bits
The sequence number of the first data octet in this segment.
Acknowledpement Number: 32 bils

If the ACK contral bit is set this field contains the value of the next sequence number the
sender of the scgment is expecting to receive.

Data Olisel: 4 bils

The number of 32 bit words in the TCP Header. This indicates where the data begins.
Reserved: 4 bils

Reserved for future use.

Conlrol Bits: 8 bits {from left to right):

I_IF{!.".; Urgent Pointer field significant
ACK: Ackquulen‘gment field significant

EOL: End af Letter

1157 Heset 1he connection
SYN: Synchronize sequence numbers
FIN: No more data from sender

Window: 16 bils

The number of dala oclets beyond the one indicated in the acknowledgment field which
the sender of this scgment is willing to accepl.

Checksum: 16 bils

The chocksum ticld is the 16 bit one's complement of the one’s complement sum of all
16 bil words in the header and lext, except thal unchecksummed option fields are
replaced with zeros in the computation. If a segment contains an odd number of header
and lext oclets to be checksummed, the last oclet is padded with zeros to form a 16 bit
word for checksum purposes. The pad is nol transmitted as part of the segment.

The checksum also covers a 64 bil pseudo header prefived to the TCP header. This
pscudo header conlains the Source Address and the Deslination Address. This give the
1CP prolection against misrouled segments.

[Page 34] Postel

September 1978
TCP-4

Specification

Urgenl Pointer: 16 bits

This ficld communicates the current value of the urgent pointer as a positive offset from
the sequence number in this segment. This field should only be interpreted in segments

wilh the URG control bit sel.

TCI? Oplions: wariable

Oplions may occupy space at the end of the TCP header and are a multiple of & bits in
lenglh. All options have the same basic format:

Oplion length: 8B bits

Length in octels (including the two octets of length and kind information)

Oplion kind: 8B bils

Oplions are :rft:ui-ty included in the cheeksum,
A

There are two special tases for oplions.

The first is the option whose length field is zero. This marks the end of the option

lisl. Only one octet is associated with this option, the length octet itself.
Nop-0pTien .
prodeiag

The second is the oplion whose length field is one. This option serves as
and is also one oclet long. This option does not terminate the option list.

Mole that the list of options may be shorter than the header length field might
imply. The conlent of the hcader boyond the end-of-option mark should be header

T C Pepadding (i.e., zero). The two special options are included in the checksum of the
segmenl.

lMostel [Page 35]

September 1978
TCP-4

Specification

Currently defined options include (kind indicated in octal):

Kind Lenath Meaning
- 1 End of option list.
- 1 Radding. NoPT/low
188 - Reserved.
481 i 5
182 & Secure Open - used by TCP's
communicating with BCR security
system.
183 & Secure Close-used by TCP's
communicating with BCR security
SUSTEM.
18% 4 Buffer size, in octets.
—TheeksummecH-r

Specific Oplion Definitions

End of Option List

Lenpth=0

This oplion code indicales the end of the option list. This might not coincide with
the end of the TCP header according to the Data Offset field. This is used at the
end of all eptions, nol the end of each option, and need only be used if the end of
lhe options would nol otherwise coincide with the end of the i%i header.

Peactdme. WO P TloN

10000000 1!

.

Length=1

This option code may be used belween oplions, for example, to align the begining
of a subsequent oplion on a word boundary,

[Pape 36] Postel

September 1978
TCP-4

Specification

Segment Label

4mmmmmceod

100000100!

BCR Secure Open

T .

100000]00101000010! 177 !

dommmmmmm e e ———— e

Length=4 Kind=102

BCR Sccure Close

T e et 4

'00000100!01000011! 7? !

i o o e

Lenglh=4 Kind=103

Buffer Size

=

[I [— — +

100000100!01000101! buffer size !

e

Length=1 Kind=105

Buffer Size Oplion Data: 16 bils

If this option is present, then it communicates the receive buffer size for process
at the TCP which sends this segment. This field should only be sent in
segments wilh bolh the OPT and SYN control bits set. If this option is not used,
the default buffer size of onc oclet is assumed.

Length=6 Kind=304

TepP= F'acHEnp.:

The Padding ficld is used to ensure that the data begins on 32 bit word boundary. The
TC-?"' padding is composed of zeros. ;

Postel [Page 37]

September 1978
TCP-4

Specificalion

3.4. Discussion

The main jobs of the TCP are:

a, Connection management, the establishing and closing connections.

b. Packaging of outpoing user lellers into segments for internet transmission.

C. Reassembly of incoming segmenls into letlers for deliver to users.

d. Flow control, sequencing, duplicate detection, and retransmission for each
conneclion,

e, Processing user requests for service,

Sequence Numbers

A fundamental notion in the design is that every octet of data in an TCP segment has a
sequence number. Since every oclet is sequenced, each of them can be acknowledged
individually or collectively. In parlicular, the acknowledgment mechanism employed is
cumulalive so that an acknowledgment of sequence number X indicates that all octets up
to but not including X have been received. This mechanism allows for straight-forward
duplicate detection in the presence of retransmission.

It is essenlial lo remember that the actual sequence number space is finite, though very
“larpe. In the current design, this space ranges from O to 2##32 - 1. Since the space is
finite, all arithmetic dealing wilh scquence numbers must be performed modulo Z#232.
This unsigned arithmetic preserves the relationship of sequence numbers as they cycle
from 24¢32 - 1 to 0 again. There are some subtlies to computer modulo arithmetic so
greal care should be taken in programming these tests. The typical kinds of sequence
number comparisons which the TCP must perform include:

{a) Dctermining that an acknowledgment refers to some sequence number sent but
nel yel acknowledged.

(b) Determining that all sequence numbers occupied by a segment have been
acknowledped {e.g., to remove the segment from a retransmission queue),

{c} Delermining that an incoming segment contains sequence numbers which are
expected (ie, thal the segment "overlaps" the receive window).

The TCP typically maintains status information about each send connection, as is
illustraled in fipure 5 below.

[Page 38] Postel

September 1978
TCP-4
Specification

older sequence numbers newer sequence numbers
|] L In ‘ 5 |]
HL T1 Hz T2 H3 T3
<----- sgquence space =---->

TCP State Information for Sending Sequence Space
Figure b.
L = oldest, unacknowledged sequence number {LFT.SEQ)

S = next sequence number to be sent (SND.SEQ)

A = acknowledgment (next sequence number expected by the acknowledging TCP)

(SEGACK)
H(i) = first sequence number of the i-th segment {SEG.SEQ)
T(i) =lasl sequence number of the i-th segment (SEG.SEQ + MAX(0,SEG.LEN-1))

An acceptable acknowledgment, A, is one for which the inequality below holds:
0<(A-L)<=(5-L) (1)
0 < (SEG.ACK - LFT.SEQ) <= (SND.SEQ - LFT.SEQ)

We will often wrile inequality (1) in the form below:

L<A<=S (2)
LFT1.SEQ = SEGACK <= SND.SEQ

Note that all arithmelic is modulo 2##32 and that comparisons are unsigned, "<="
means "less than or equal.”

Poslel [Page _39}

September 1978
TCP-4

Spocificaiion

Similarly, the determination that a particular segment has been fully acknowledged can
be made if the inequality below holds:

0 <(T()-L)<(A-L) (3)
0 < ((SEG.SEQ+SEG.LEN-1} - LFT.S5EQ} < (SEGACK - LFT.SEQ}

In this instance, Hii} and T(i) are relaled by the equation:
14i) = Hi) + nli) - 1 (4)

where ni) = the number of octets occupied by the data in the segment. It is
imporlant to nole that n(i) must be non-zero; segments which do not occupy any
sequence space (e.g, emply acknowledgment segments) are never placed on the
relransmission queue, so would not go through this particular test.

For each receive connecticn the following informalion is needed:

older sequence numbers newer sequence numbers
N R
—WM——W—WM—
H1 T1 H2 12 H3 13
Sesmpe sequence space -----2

TCP State Informalion for Receiving Sequence Space
Figure 6.
N = next sequence number expected on incoming segments (RCV.SEQ)

R = last sequence number expecled on incoming segments, plus one
(RCV.SEQ+RCV.WND)

H(i} = firsl sequence number occupied by the i-th incoming segment (SEG.SEQ)

Ti) = lasl sequence number occupied by the I-th incoming segment
(SEG.SEQ+MAX(0,SEG.LEN-1})

[Page 40] Postel

September 1978
TCP-4

Specification

R and N in figure 6 are related by the equation:
R=N+W (5)
RCV.SEQ+RCV.WND = RCV.SEQ + RCV.WND
Where W = the receive window size

Finally, a segment is judged to occupy a porlion of valid receive sequence space if
0<=(T-N<(R-N) (6)

where T is lhe last sequence number occupied by the segment, N is the next sequence
number expecled on an incoming segment, and R is the right edge of the receive
window, as shown in figure 6.

Actually, it is a litlle more complicated than inequality 6 indicates. Due to zero
windows and zcro length segmenls, we have four cases for the acceptability test for

an incoming segment;

Sepment Heceive Test
Length Window

o 0 SEGSEQ = RCV.SEQ
0 >0 RCV.SEQ <= 5EG.SEQ < RCV.SEQ+RCV.WND

>0 0 nol acceplable
>0 >0 RCV.SEQ < SEG.SEQ+SEG.LEN <= RCV.SEQ+RCV.WND

Mole that the acceptance test for a segment, since il requires the end of a segment to lie
in the window, is somewhat more restrictive than is absolulely necessary. If at least the
first sequence number of the segment lics in the receive window, or if some part of the
scgment lies in the receive window, then the segment might be judged acceptable. Thus,
in figure 6, al leasl segments 1 (H(1)-T(1)) and 2 (H(2)-T(2)) are acceptable by the
sirict rule and sepment 3 (H(3)-T(3)) may or may not be, depending on the strictness of

inlerprelation of the rule.

Note that when R = N, lhe receive window is zero and no segments should be acceptable
except ACK scgments. Thus, it should be possible for a TCP to maintain a zero receive
window while transmitling data and recelving ACKs on a non-zero send window.

We have taken advanlage of the numbering scheme to protect certain control information
as well. This is achicved by implicilly including some control flags in the sequence space
s0 they can be relransmitled and acknowledged without confusion (ie., one and only one
topy of the control will be acted upon). Control information is not physically carried in

Postel [Page 41]

September 1978
TCP-4

Specification

the segpmenl dala space. Consequenlly, we must adopt rules for implicitly assigning
sequence numbers to control. The SYN and FIN are the only controls requiring this
prolection, and these conirols are used only at connection opening and closing. For
scquence number purposes, the SYN is considered to occur before the first actual data
oclot of the sepment in which it occurs, while the FIN is considered to occur after the last
actual data octel in a segment in which it occurs. The segment length includes both data

and scquence-space-occupying controls,
Initial Sequence Number Selection

The prolocol places no rostriction on a parlicular connection being used over and over
apain. MNew inslances of a connechion will be referred to as incarnations of the
conneclion. The problem that arises owing to this is -- "how does the TCP identify
duplicale segments from previous incarnations of the connection?” This problem
becomes harmfully apparent if the conneclion is being opened and closed in quick
succession, or if the connection breaks with loss of memory and is then reestablished.

The ,essence of lhe seclution [Tomlinson74] is that the initial sequence number (ISN)
must be chosen so thal a particular sequence number can never refer to an "old" octet.
Once the connection is established the sequencing meochanism provided by the TCP
filters oul duplicates.

For a conncclion to bo established or initialized, the two TCP's must synchronize on each
other’s initial sequence numbers. This is done in an exchange of connection establishing
messapes carrying a conlral bit called "SYN" {for synchronize) and the initial sequence
numbers, as a shorthand messages carrying the SYN bit are also called "SYNs". Hence,
the selulion requires a suilable mechanism for picking an initial sequence number and a
sliphlly involved handshake fo exchange the [SN's. A "three way handshake” is
necessary because sequence numbers are not tied to a global clock In the network, and
TCP's may have different mechanisms for picking the ISN's. The receiver of the first
SYN has no way of knowing whether the segment was an old delayed one or nof, unless it
remembers the last sequence number used on the connecltion (which is not always
poscaible), and so it must ask the sender to verify this SYN.

The "three way handshake” and the advantages of a "clock-driven” scheme are
dircusaed in [Tomlinson74]. Maore on the subject and algorithms for implementing the
tlock-driven scheme can be found in [Dalal74, Dalal75, Cerf7éb].

Knowing When to Keep Quiet

A basic poal of the TCP design is to prevent segments from being emitlted with sequence
numboers which duplicate those which are slill in the network. We want to assure this,
even if a TCP crashes and loses all knowledge of the sequence numbers it has been
using. When new conneclions are created, an initial sequence number (ISN) generator is
employed which sclecls a new 32 bit ISN. The generator is bound to a (possibly
fictitious) 32 bil clock whose low order bit is incremented roughly every 4 microseconds.

[Pape 42] Postel

September 1978
TCP-4

Specification

Thus, the ISN cycles approximately every 455 hours. Since we assume that segments
will slay in the nelwork no more than tens of seconds or minutes, at worst, we can
reasonably assume that ISN's will be unique.

To be sure that a TCP does not create a segment that carries a sequence number which
may be duplicaled by an old segment remaining in the network, the TCP must keep quiet
for a maximum sepment lifelime (MSL) before assigning any sequence numbers upon
slarling up or recovering from a crash in which memory of sequence numbers in use was
lost. For this specification the MSL is taken lo be 2 minutes. This value may be changed
if expericnece indicales it is desirable fo do so, Nole that if a TCP is reinitalized in some
sense, yel relains its memory of scquence numbers in use, then it need not wait at all; it
must only be sure to use sequence numbers larger than those recently used.

It should be noted that this strategy does not protect against spoofing or other replay
type duplicale message problems.

Establishing a conncction

The "hrec-way handshake" is essentially a unidirectional attempt to establish a
conneclion; ie, there is an initialor and a responder. The TCP can also establish a
conneclion when a simullaneous initiation occurs. A simultaneous altempt occurs when
one: TCP receives a "SYN" segment which carries no acknowledgment after having sent
a "SYN" earlicr. ©Of course, the arrival of an old duplicate "SYN" segment can
polentially make it appear, to the recipicnt, that a simultaneous connection initiation is in
propress. Proper use of “"reset" scgments can disambiguate these cases. Several
cxamples of connection initiation are offered below, using a notation due to Tomlinson.
Althouph these examples do not show conncction synchronization using data-carrying
sepments, this is perfectly legitimate, so long as the receiving TCP doesn’t deliver the
data to the user until it is clear the data is valid (ie, the data must be buffered at the
receiver until the connection reaches the ESTABLISHED state (see figure 2)).

The simplesl three-way handshake is shown in figure 7 below. The figures should be
interpreted in the following way. Each line is numbered for reference purposes. Right
arrows {--*) indicate deparlure of a TCP scgment from TCP A to TCP B, or arrival of a
scgment at B from A, Left arrows (<--), indicate the reverse. Ellipsis (..} indicates a
sopment which is still in the network (delayed). An "XXX" indicates a segment which Is
lost or rejected. Comments appear in parentheses. TCP states are keyed to those in
lipure 3 and represent the state AFTER lhe departure or arrival of the segment (whose
conlenls are shown in the center of each line). Segment contents are shown In
abbreviated form, with sequence number, control flags, and ACK fleld. Other fields such
as window, addresscs, lengths, and text have been left out, generally, in the interest of

clarity.

Postel [Page 43]

September 1978

TCP-4

Specification

[Page

TCI* A TCP B
1. OPEN OPEN
2. SYN-SENT --> <SE0 188><SYN> --» SYN-RECEIVED

3. FESTABLISHED <-- <SE0 38B><SYN><ACK 181> <-- SYN-RECEIVED
fi. ESTABLISHED --> <SEQ 181><ACK 381> --> ESTABLISHED

5. ESTABLISHED --> <SEQ 181><ACK 381><DATA> --> ESTABLISHED

Basic 3-Way Handshake for Connection Synchronization
Figure 7.

In line 2 of figure 7, TCP A begins by sending a SYN segment indicating that it will use
sequence numbers sltarting with sequence number 100, In line 3, TCP B sends a SYN
and acknowledges the SYN it received from TGP A. Nole thal the acknowledgment field
indicates TCP B is now expecling to hear sequence 101, implicitly acknowledging the
SYN which occupied sequence 100,

Al line 4, TCP A responds with an empty segment containing an ACK for TCP B's SYN;
and in line 5, TCP A sends some data. Note thal the sequence number of the segment in
line & is the same as in line 4 because the ACK does not occupy sequence number space
{if it did, we would wind up ACKing ACK's!).

Simullancous initiation is only slightly more complex, as is shown in figure 8. Each TCP
cyclos from OPEN 1o SYN-SENT to SYN-RECEIVED to ESTABLISHED.

The principle reason for the threc-way handshake is to prevenl old duplicate connection
initialions from causing confusion. To deal with this, a special control message, RESET,
has beon devised. A TCP which receives a RESET message first verifies that the ACK
field of the RLSET acknowledges something the TCP sent (otherwise, the message is
ipnored). It the receiving TCP is in a non-synchronized state (ie, SYN-SENT,
SYN-RICEIVED), il returns to OPEN on receiving an acceptable RESET. If the TCP is in
one of the synchronized stales (ESTABLISHED, FIN-WAIT, CLOSE-WAIT, CLOSING), it
aborls Ihe conncclion and informs its user. We discuss this lalter case under
"half-open" conneclions below.

41] Postel

Seplember 1978

TCP A
1. OPEN
2. SYM-SENT --> <SE0 1688><SYN>

-- <SE0 380><5YN>

A

3. SYN-RECEIVED
[v <5E0 18B><5YN=

5. SYN-RECEIVED --> <SE0 1Bl=<ACK 381>

E. LSTABLISHED <-- <5E0 3Bl><ACK 181>

TCP B
OPEN

<-- SYN-SENT
--> SYN-RECEIVED

<-- SYN-RECEIVED

7. «++ <SEQ 181><ACK 3Bl> --> ESTABLISHED

Simultaneous Connection Synchronization

Figure 8.
1CF A
1. OPCN
2. SYM-SCNT —-> <5E0 188><SYN>

3. (duplicate) ... <SE0 1BB8><SYN>
4, SYN-SENT <-- <5E0 3B8><SYN><ACK 1881>

. S5YN-SENT --> <5E0 1BBl><RST><ACK 38l=»

'E‘;- " ":EEE IBB?‘QS?IHD-
7. SYN-SENT <-= <SE0 4BB><SYN><ACK 181>

8. ESTABLISHED <SEQ 181><ACK 481>

1
1
W

TCP B

OPEN
--» SYN-RECEIVED
<-- SYN-RECEIVED

=== OPEN
(ACK is ok)

--» SYN-RECEIVED
<-- SYN-RECEIYED
--> ESTABLISHED

Recovery from Old Duplicate SYN

Figure S,

TCP-4

Specification

As a simple example of recovery from old duplicates, consider figure 9. At line 3, an old
duplicate SYN arrives al TCP B. TCP B cannot tell that this is an old duplicate, so it

Postcl

[Page 45]

September 1978
TCP-4

Specification

responds normally {line 4), TCP A detects that the ACK field is incorrect and returns a
RST (recsel) wilh ils SEQ and ACK fields selected lo make the segment believable. TCP
B3, on receiving the RST, returns to the OPEN stale. When the original SYN (pun
intended) finally arrives al line 6, the synchronization proceeds normally. If the SYN at
line & had arrived before the RST, a more complex exchange might have occurred with
R5T's sent in both directions.

Hall-Open Connections and Qther Anomalies

An established conneclion is said to be "half-open” if one of the TCP's has closed or
aborted the conneclion at ils end without the knowlcdge of the other, or if the two ends
ol the conneclion have become desynchronized owing to a crash that resuited in loss of
mcmory. Such connections will automalically become reset if an attempt is made to send
data in cither direction. However, half-open connections are expected to be unusual, and
the recovery procedure is mildly involved.

If al site A the connection no longer exists, then an atiempt by the user at site B to send
any dala on il will result in the sile B TCP receiving a RESET control message. Such a
message should indicate to the site B TCP that somelhing is wrong, and it is expected to
ABORT the connection.

Acsume thal two user processes A, and B, are communicating with one another when a
crash occurs causing loss of memory {o A’s TCP. Depending on the operating system
supporling A’s TCP, it is likely thal some crror recovery mechanism exists. When the
1CP is up apain, A is likely to starl apain from the beginning or from a recovery point.
Ae a resull A will probably try to OPEN the connection again or try to SEND on the
conneclion il believes open. In the laller case, it receives the error message "connection
nol open” from the local TCP. In an atlempt to establish the connection A’s TCP will
send a segment containing SYM. This scenario lcads to the example shown in figure 10.
After TCP A crashes, the user allempts to re-open the connection. TCP B, in the
meanlime, thinks the connection is open.

[Pape 46] Postel

Seplember 1978
TCP-4

Specification

1CP A TCP B
1. (CRASH) (send 3B8,recelive 1B88)
2. UOPEN ESTABLISHED
3. SYN-SENT --> <SE0 48B><S5YN> - (?7)
4, (1) <-- <5E0 388><ACK 188> <-- ESTABLISHED

5. GSYN-SENT --> <SEQ 188><RST><ACK 388> --> (Abortll)
Half-Open Connection Discovery
Figure 10,

When the SYN arrives at line 3, TCP B, being in a synchronized state, responds with an
acknowledpmenl indicating what sequence it next expects to hear (ACK 100). TCP A
sces thal this segment does not acknowledpge anything it sent and, being unsynchronized,
sends a resel (RST) because it has delecled a half-open connection, TCP B aborls at line
5. TCP A will conlinue to retransmit its SYN; and if the user at TCP B re-opens the

conneclion, evenlually everything will work oul.

An inleresting allernative case occurs when TCP A crashes and TCP B tries to send data
on whal it thinks is a synchronized connection. This is illustrated in figure 11. In this
case, the data arriving at TCP A from TCP B (line 2) Is unacceptable beacause no such
conncclion exists, so TCP A sends a RST. The RST is acceptable so TCP B processes it

and aborts the connection.

TCP A TCP B
1. (CRASH) (send 388,receive 188}
2. 1?7 <-- <5E0 3BB><ACK 188><DATA 1B> <—- ESTABLISHED
3. --» <5EQ0 188><RST»><ACK 318> --> (ABORT!!)
Aclive Side Causes Half-Open Connection Discovery
| Figure 11.

In fipure 12, we find the two TCP's A and B with passive connections waiting for SYN.
An old duplicale erriving at TCP B (line 2) stirs B into action. A SYN-ACK is returned

Poslel [Page 47]

TCP-4

September 1978

Specificalion

(line 3) and causes TCP A to generate a RST (the ACK in line 3 is not acceptable). TCP
B accepts the resel and returns lo its passive OPEN state.

1.

25
3
4.

5.

TCP A TCP B
OFEM : OPEN
++» <5EQ0 Z><SYN> --> SYN-RECEIVYED

(??) <-- <SEQ X><S5YN><ACK Z+l» <-- SYN-RECEIVED
—--> <SE0 Z+1><AST><ACK ¥+l»> --> (return to DPEN!)
OPEN OPEN
Old Duplicate SYN Initiates a Reset on two Passive Sockets

Figure 12,

A wvariely of other cases are possible, all of which are accounted for by the following rules
for RST generation and processing.

Resel Generation

A= a general rule, reset (RST) should be sent whenever a segment arrives which
apparently is not intended for the current or a future incarnation of the connection. A
resel should nol be sent if it is not clear that this is the case. Thus, if any segment
arrives for a nonexistant connection, a resel should be sent. If a segment ACKs
somelhing which has never beon sent on the current connection, send reset.

1 If the conneclion is in any non-synchronized state (OPEN, SYN-SENT,
SYN-RECEIVED) or if the connection does not exist, a reset (RST) should be formed
and senl for any segment that acknowledges something not yet sent. The RST should
lake ils SEQ field from the ACK field of the offending segment (if the ACK control bit
was sel), and ifs ACK field should acknowledge all data and control in the offending
scpment. This is done to make the scgment believable to the remote TCP. The
sequence field will contain the next scquence the remote TCP expects, and the
acknowledgment field will acknowledge everything the remote TCP claims to have sent.

2. It the connection is in a synchronized state (ESTABLISHED, FIN-WAIT,
ClLOSE-WAIT, CLOSING), any unacceptable segment should elicit only an empty
acknowledgment segment containing the current send-sequence number and an
acknowledgmenl Indicating the next sequence number expected to be received.

[Pape 48] Postel

September 1978
TCP-4

Specification

Reset Processing

All RST {reset) segments are validaled by checking their ACK-fields (and SEQ fields if
in a synchronized slale). If the RST acknowledges something the receiver sent (but
has not yet received acknowledgment for), the RST must be valid. RST segments will
have ACK ficlds which acknowledge any data and control in the offending segment to
assure acceplability of the RST.

The receiver of a RST first validates it, then changes state, If the receiver was in a
non-synchronized state (OPEN, SYN-SENT, SYN-RECEIVED), it returns to the OPEN
slale (possibly modifying the foreign sockef specification in the process). If the
receiver was in a synchronized stale (ESTABLISHED, FIN-WAIT, CLOSE-WAIT,

CLOSING), it aborls the conneclion and advises the user.

Closing a Conneclion

ClLOSE is an operation meaning "l have no more data to send.” The notion of closing a
full-duplex connection is subject to ambiguous interprelation, of course, since it may not
be obvious how to treat the receiving side of the connection. We have chosen to treat
CLOSE in a simplex fashion. The user who CLOSES may continue to RECEIVE until he is

lald that the other side has CLOSED also. Thus, a program could initiate several SENDs
followed by a CLOSE, and lhen continue to RECEIVE until signaled that a RECEIVE failed
because the other side has CLOSED. We assume that the TCP will unilaterally inform a
user, even if no RECEIVEs are oulstanding, that the other side has closed, so the user
can lerminale his side gracefully. A TCP will reliably deliver all buffers SENT before the
conncction was CLOSED so a user who cxpects no data in return need only wait to hear
lhe conneclion was CLOSED successfully to know that all his data was received at the

deslinalion TCP.

There are essentially three cases:
1} The user initiales by telling the TCP to CLOSE the connection
2) The remote TCP initiates by sending a FIN control signal
3) BHoth users CLOSE simultancously

Case |: Local user initiates the close

in this case, a FIN segment can be constructed and placed on the outgoing segment
gueue. No further SENDs from the user will be accepted by the TCP, and it enters the
FIN-WAIT state. RECEIVES are allowed in this state. All segments preceding and
including FIN will be retransmitled until acknowledged. When the other TCP has both
acknowledged the FIN and sent a FIN of its own, the first TCP can ACK this FIN and
delele the connection (see figure 2). If should be noted that a TCP receiving a FIN

will ACK but not send its own FIN unlil the user has CLOSED the connection also.

Postel [Page 49]

September 1978

TCP-4
Specification

Cane 2: TCP receives a8 FIN from the network

If an unsolicited FIN arrives from the network, the receiving TCP can ACK it and tell
the user that the connection is closing. The user should respond with @ CLOSE, upon
which the TCP can send a FIN to the other TCP, The TCP then waits until its own FIN
is acknowledped whereupon il deletes the connection. If an ACK is not forthcoming,
after a timeoul the connectlion is aboried and the user is told.

Caso 3: both users close simultaneously

A simultancous CLOSE by users at both ends of a connection causes FIN segments to
be exchanged. When all segments preceding the FIN have been processed and
acknowledped, each TCP can ACK the FIN il has received. Both will, upon receiving
these ACKs, delele the connection.

Close also implics an end of letter.

End of Letler Sequcnce Number Adjusiments

The difference belween the sequence numbers of the first oclets of data in any pair of
letters on a given connection always equals zero modulo the receive buffer size. That is,
whenever an EQL is transmitled, the sender advances his send sequence number by an
amount (in the range O to buffersize-1) sufficient to consuime all the unused space in the
receiver’s buffer. The amounl of space consumed in this fashion is deducted from the
sond windaw just as is the space consumed by actual data.

An EOL signals the consumption of the rest of the space in the buffer and that the data
sequence numbers reflect that. The exchange of buffer size and sequencing information
is done in unile of octets. If no buffer size is stated, lhen the buffer size is assumed to

be 1 octel.

The receiver tells the sender the size of the buffer in a SYN segment that contains the
16 bit buffer size data in an option field in the TCP header, the presence of the field

being signaled by the OPT control bit.

If a lotter starts al sequence number x and is n octets long and the buffer size is m
octets, then the next letter starls at »+im, where i Is a positive integer such that

im > n > {i=])m.

[Pape 50] Postel

September 1978
TCP-4

Specification

The effect of all this is that each EQOL advances the sequence number (SN} to
SN = IS + i#B

where IS is the inilial sequence number, B is the buffer size, and | is the smallest
infeger such that

IS + (i-14B <y <= IS +isB
where y = SEG.SEQ+SEG.LEN

If a bufler size is specified, then all receive butfers provided by the user must be exactly
that size, otherwise the TCP should return an error indication.

The Communication of Urgent Information

The urgent mechanism is used lo indicale the need for special processing of the data
traversing the conneclion. This mechanism permits a point in the data stream to be
designated as the end of "urgent” information. Whenever this point is beyn'nd the left
window edpe al the receiving TCP, that TCP so informs the application program, so the
propram can swilch into a mode of operation intended to scan through the data up to the
urgent pointer in an attempl to extract the urgent information. The exact nature of this
scan depends on the higher level protocol being employed, but would typically involve

discarding information.

As soon as an urgent poinfer Is in advance of the left edge, the TCP should tell the user
lo po into "read fas!" mode; when left edge catches up to urgent pointer, the TCP should
tell umer to po into "read normal” mode. If the urgent pointer is updated while the user
i= in "read fast” mode, the update will be invisible to the user.

The melhod employs a urgent field which is carried in all segments transmitted. A
conlrol bit {(URG} indicales that the 16-bit field is meaningful and should be added to the
sepmenl sequence number lo yield the urgent pointer. The absence of this bit indicates

that the urgent pointer has nol changed.

It should be mentioned thal coordinating the urgent pointer with a letter boundary acts to
insure timely delivery of the urgenl information to the destination process.

The objective of the TCP urgent mocchanism is to allow the sending user to stimulate the
receiving user to accepl some urgent data and to permit the receiving TCP to indicate to
lhe receiving user which octet in the received data is the last of the currently known

urgent data.

The assumplion made in providing Lhis service is that the higher level will always transmit
new dala when urgent is to be asserted. Typically, the higher level protocol may employ
a special method lo dislinguish the urgent data from ordinary data, eg., by special
format or coding conventions, but this need not be necessarily be the case.

Postel [Page 51]

September 1978

TCP-4
Spccification

The basic urgent service can be described as follows:

When the user hands a buffer of data to the TCP to be sent, and asserts that it is urgent,
the TCP assumes that the last octet of the urgent data coincides with the last octet of
the buffer. Successive Iransmission of new urgent data causes the "end of urgent data”

to exlend farther into the data stream.

il the sending user asserts EOL when sending the urgent data, then the receiving TCP will
atlempt to deliver the data to the receiving user even if the buffer into which data is
being assembled is mnot full. This is not unigue to urgent data since EOQL is the
mechanism for the user to assert to the receiving TCP "deliver this without waiting for

more dala®,

In any case, the receiving TCP will indicate to the receiving user precisely which octet of
dala is the last of the urgent octets. This is accomplished by associating with newly
delivered data a pointer to the "end of urgent data".

The urgent mechanism provides an oul-of-band signal which the sending user can employ
to alerl the receiving user to enter an "urgent” stale. No semantics are assumed for
this sipnal. Furthermore, there is no inlent that every urpent data fransmission result in
an urgenl signal to the receiving user. Instead, it is guaranleed that the receiving user
will be signalled at least once when he should enler the urgent state and will later be told
when he has received that last known (lo the receiving TCP) urgent data.

The precise form of the urgent signal is an implementation decision but it must be
"oul-of-band” with respect to delivery of normal dala.

Il is assumed that the user always provides new data to send when asserting urgent.
However, the TCP may not always be able to accept any new data to transmit (which is
one reasan for trying to assert urgent). Then sending TCP will attempt to signal urgent
to the receiving TCP even if it cannot actually accept new data for trangmission. To be
consistent with the dosign of the urgent meochanism, users which have attempted to send
urgent data must continue to allempt to send this data until it is accepted or the

conncclion is olherwise closed or aborted.

A consequence of the TCP's allempl lo sipnal urgent even when it cannot accept the new
data for transmission is the receiving user may enter and leave the urgent state more
than once before the desired urgent data is actually delivered.

Managing the Window

The mechanisms provided would allow a TCP to adverlize a large window and fo
subsequently adverlize a much smalier window without having accepted that much data.
This, so called “"shrinking the window," is strongly discouraged. For more on window

manapcment, sec the section on implementation.

The sending TCP must be prepared fo accepl and send at least one octet of new data

[Pape 62] | Postel

September 1978

TCP-4

Specification

cven if the send window is zero. This is essenlial to guarantee that when either TCP has
a zero window the re-opening of the window will be reliably reported to the other.

Users must keep reading connections they close for sending until the TCP says no more
dala.

In a connection with a one way data flow the window information will be carried in
acknowledgment segments that ail have the same sequence number so there will be no
way lo reorder them if they arrive out of order. This is not a serious problem, but it will
allow the window information to be on occasion temporarily based on old reporis from
the dala receiver.

35, Examples & Scenarios

Examplcs are needed.

3.6. Inlerfaces

There are of course two interfaces of concern: the user/TCP interface and the TCP/network
inlerface. We have a fairly elaborate model of the user/TCP interface, but only a sketch of

the interface to the lower level prolocol module.

Llser J1CP Interface

Postel

The functional descriplion of user commands to the TCP is, at best, fictional, since every
opecrating system will have different facilities. Consequently, we must warn readers that
various TCP implementations may have different user inlerfaces. These will all be TCP's,
as long as control messages are properly interpreted or emitted, as required. In spite of
this caveal, it appears useful to have at least one concrete view of a user interface to aid
in thinking about TCP-derived services.

TCP User Commands

The following sections functionally characterize a USER/TCP interface. The notation
uscd is similar 1o most procedurc or funclion calls in high level languages, but this
urape is not meant to rule out Lrap type service calls (e.g, SVC’s, UUO’s, EMT’s,...).

The user commands described bolow specify the basic functions the TCP will perform

te =upparl irnecrprocess communicalion. Individual implementations should define
their own exacl formal, and may provide combinations or subsets of the basic
funclions in single calls. In particular, some implementations may wish to

automalically OPEN a connection on the first SEND, RECEIVE, or URGENT issued by
the user for a given conneclion.

[Page 53]

September 1978

TCP-4
Specification

In providing interprocess communication facilities, the TCP must not only accept
commands, bul must also return information to the processes it serves. The latter

consisls of:

(a} general information about a connection [e.g., interrupts, remote close, binding
of unspecified foreign socket].

(b} replies to speeific user commands indicating succcess or various types of
failure. ;

Although the mecans for signaling user processes and the exact format of replies will
vary from one implementalion te another, it would promote common understanding
and testing if a common sel of codes were adopted. Such a set of event codes is

desceribed below.
Open

Format: OPEN (local port, forcign socket [, buffer size] [, timeout]) -> local
conneclion name

We assume thal the local TCP is aware of the identity of the processes it serves
and will check the authority of the process to use the connection specified.
Depending upon the implementation of the TCP,- the local network and TCP
identifiers for the source address will either be supplied by the TCP or by the
processes that serve it (e.g, lhe program which inlerfaces the TCP to its segment
switch or the segment swilch itscif), These considerations are the result of concern
about sccurity, to the extenl that no TCP be able to masquerade as another one,
and so on. Similarly, no process can masquerade as another without the collusion

ol the TCP.

It no foreign socket is specified (i.e, the foreign socket parameter is 0), then this
conslititules a LISTENING local socket which can accept communication frem any
foreign socket. Provision is also made for partial specification of foreign sockets.

If the specificd connection is already OPEN, an error is returned; otherwise, a
full-duplex transmission conltrol block (TCB) is crealed and partially filled in with
dala from lhe OPEN command paramelers. The TCB format is described in more
delail in section 5.4,

No nelwork traffic need be generaled by the OPEN command. The first SEND or
URGENT by the local user or the foreign user will typically cause the TCP to
synchronize (i.e., eslablish) the connection, although synchronization could be
immedialely initiated on non-listening opens.

The bulfer size, if present, indicates that the caller will always receive data from
the connection in that size of butfers.

[Pape B4] Postel

September 1978

Poslel

TCP-4

Specification

The timeout, if preseni, permils the caller to set up a timeout for all buffers
Iransmitled on the connection. [f a buffer is nolt successfully delivered to the
destination within the timeout period, the TCP will abort the connection. The
present global defaull is 30 seconds. The buffer retransmission rate may wvary;
most likely, it will be relaled to the measured time for responses from the remote

TCH,

Depending on the TCP implementalion, either a local connection name will be
returned to the user by the TCP, or the user will specify this local connection name
{in which case another parameter is needed in the call). The local connection name
can thon be used as a short hand term for the connection defined by the <local
sacket, foreign sockelt> pair.

Send

Formal: SEND{local connection name, buffer address, byte count, EOL flag
[, timeout])

This call causes the data contained in the indicated user buffer to be sent on the
indicaled connection. If the connection has not been opened, the SEND s
considered an error. Some implementations may allow users to SEND first; in
which case, an automalic OPEN would be done. |[f the calling process is not
aulhorized to use this conneclion, an error is returned:

If the EOL flag is set, the data is the End Of a Letter, and the EOL bit will be set in
the last inlernelwork segment created from the buffer. If the EOL flag is not set,

subscquent SENDs will appear lo be part of the same letter.

If no forcign sockel was specified in the OPEN, but the connection is established
{c.g., bocause a LISTENing connection has become specific due to a foreign
scgment arriving for the local socket]) then the designated buffer is sent to the
implicd foreipn sockel. In general, users who make use of OPEN with an
unspecified foreigpn sockel can make use of SEND without ever explicitly knowing

the foreign socket address,

However, if a SEND is attempied before the foreign socket becomes specified, an
crror will be relurned. Users can use the STATUS call to determine the status of
fhe connection. In some implementations the TCP may notify the user when an

unspecificd socket is bound.

If a timeout is specified, then the current timeout for this connection is changed to
lhe new one.

In the simplest implementation, SEND would not return control to the sending
process unlil either the transmission was complete or the timeout had been
cxceeded. However, this simple method is both highly subject to deadlocks (for
example, bolh sides of the connection might try to do SENDs before doing any

[Page 55]

TCP-4

September 1978

Specificalion

RECEIVEs) and offers poor performance, so il is nol recommended. A more
sophislicaled implementation would return immediately to allow the process to run
concurrently with network 1/0, and, furthermore, lo allow multiple SENDs to be in
progress. Multiplo SENDs are served in first come, first served order, so the TCP

will queue those it cannot service immediately.

We have implicitly assumed an asynchronous user interface in which a SEND later
elicile some kind of SIGNAL or pseudo-interrupt from the serving TCP. An
alternalive is o relurn a response immedialely. For instance, SENDs might return
immediate local acknowledgment, even if the segment sent had not been
acknowledped by the dislant TCP. We could optlimistically assume eventual
success. I we are wrong, the conneclion will close anyway due to the timeout, In
implemenlations of this kind (synchronous), there will still be some asynchronous
signals, but these will deal with the connection itself, and not with specific
sepmenls or letlers.

NOTA BENE: In order for the process to dislinguish among error or success
indications for different SENDs, it might be appropriate for the buffer address to
be returned along wilh the coded response lo the SEND request. We will offer an
cxample event code format below, showing the information which should be

refurned to the calling process.

Recoive

[Pape B6]

Formal: RECEIVE (local connection name, buffer address, byte count)}

This command allocales a receiving buffer associated with the specified connection.
If no OPEN precedes this command or the calling process is not authorized to use
this= connection, an error is returned.

In the simplest implementation, control would not return to the calling program
until either the buffer was filled, or some error occurred, but this scheme is highly
subject to deadlocks. A more sophisticated implementation would permit several
RLCEIVEs lo be oulstanding at once. These would be filled as letters, segments or
fragments arrive. This strategy permils increased throughput at the cost of a more
claborate scheme (possibly asynchronous) to notify the calling program that a letter

has been received or a bulfer filled.

If insufficient buffer space is piven to reassemble a complete letter, the EOL flag
will not be set in the response fo the RECEIVE. The buffer will be filled with as
much dala as it can hold.

The remaining parls of a partly delivered letter will be placed in buffers as they are
macle available via successive RECEIVEs. If a number of RECEIVEs are outstanding,
they may be filled with parts of a single long letler or with at most one letter each.

Postel

September 1978

Posicl

TCP-4

Specification

The evenl codes associated wilh each RECEIVE will indicate what is contained in
the buffer.

Il a buffer size was given in the OPEN call, then all buffers presented in RECEIVE
calls mus! be of exaclly that size, or an error indication will be returned.

To dislinpuish among several outstanding RECEIVEs and to take care of the case
that a letter is smaller than the bufier supplied, the event code is accompanied by
bolh a buffer poinler and a byle count indicating the actual length of the lette

received,

Alternative implementations of RECEWE might have the TCP allocate buffer
storage, or the TCP might share a ring buffer with the user. Variations of this kind
will produce obvious variation in user inlerface to the TCP.

Closn

Formal: CLOSE(local connection name}

This command causes the conneclion specified to be closed. |If the connection is
nol open or lhe calling process is not authorized to use this connection, an error is
returned. Closing conneclions is intended to be a graceful operation in the sense
that oulstanding SENDs will be transmitied (and retransmitted), as flow control
permits, until all have been serviced, Thus, it should be acceptable to make several
SEND calls, followed by a CLOSE, and expect all lhe data to be sent to the
destination. II should also be clear that users should continue to RECEIVE on
CLOSING conncclions, since the olher side may be trying to transmit the last of its
dala. Thus, CLOSE means "I have no more to send” but does not mean | will not
receive any more” It may happen (if the user level prolocol is not well thought
oul) thal the closing side is unable to get rid of all ils data before timing out. In
this evenl, CLOSE turns Into ABORT, and the closing TCP gives up.

The user may CLOSE lhe conneclion at any time on his own initiative, or in
response lo wvarious prompts from the TCP ({eg, remocle close executed,
Iransmission timeout excecded, destination inaccessible),

Because closing a connection requires communication with the foreign TCP,
conneclions may remain in the closing state for a short time. Attempts to reopen
the conneclion before the TCF replies to the CLOSE command will result in error

responses,

Close also implics end of letter.

[Page 57]

TCP-4

September 1978

Specificalion

Urpont

Format: URGENT{local connection name)

Special control information is sent fo the destination indicating that urgent
processing is appropriale. This facility, for example, can be used to simulate
"break" sipnals from terminals or error or completion codes from /0 devices.
The semanlics of this signal to the receiving process are unspecified. The receiving
TCP will signal the urgenl condition to the receiving process as long as the urgent
poinler indicatles dala preceding the urgent pointer has not been consumed by the
receiving process. -

If the conneelion is not open or the calling process is not authorized to use this
connoclion, an error is returned.

Status

Format: STATUS{local connection name)

This is an implementation dependent user command and could be excluded without
acdverse effect. Informalion returned would typically come from the TCB associated
wilh the conncclion.

This eommand returns a data block containing the following information:

local sockel, foreign socket, local connection name, receive window, send
window, connection stale, number of buffers awailing acknowledgment, number
ol buffers pending receipl (including partial ones), receive buffer size, urgent
slate, and defaull transmission timeout.

Depending on the state of the connection, or on the implementation itself, some of
this information may not be available or meaningful. If the calling process is not
authorized fo use this conneclion, an error is returned. This prevents unauthorized
processes from gaining information about a connection, :

Abort

[Pape 58]

Formal: ABORT (local connection name)

This command causes all pending SENDs, URGENTs, and RECEIVES to be aborted,
the TCB lo be removed, and a special RESET message to be sent to the TCP on the
other side of the conneclion. Depending on the implementation, users may receive
abort indicalions for each oulstanding SEND, RECEIVE, or URGENT, or may simply
receive an ABORT-acknowledgment.

Fostel

Seplember 1978

TCP-to-User Mossages

Type Codes

TCP-4

Specification

All messapes include a type code which identifies the lype of user call to which the
message applies. Types are as follows:

38 -

General
Applies
- Applies
Applies
Applies
Applies
- Applies
Applies

Mcasape Formats

message, spontaneously sent to user
to OPEN

to CLOSE

to URGENT

to ABORT

to SEND

to RECEIVE

to STATUS

All messages include the following three fields:

Type code
Local conneelion name
Evenl code

For message types 0-4 (General, Open, Close, Urgent, Abort) only these three fields
arp necessary.

For message type 10 (Send) one addilional field is necessary:

Bufler address

For message lype 20 (Recelve) three additional fields are necessery:

Buffer address
Byle count {counts byles received)
End-of-Letler flag

For message type 30 (Status) additional data might include:

Local socket, foreign socket
Send window (mecasures buffer space at foreign TCP)
Receive window (measures buffer space at local TCP)

Connection slate

Number of buffers awaiting acknowledgment
Number of buffers awaiting receipt

Receive bulffer size

Urgent Stale (urgent or not urgent)

User timeout

Once more, it

Poslel

is important to note that these formats are notional.

[Page 59]

September 1978
TCP-4

Specificalion

Implementations which _deal with buffering in different ways may or may not need
to include buffer addresses in some responses, for example.

Evenl Codes

The evenl code specifies the particular event that the TCP wishes to communicate
to the user. Generally speaking, non-zero event codes indicate important state

changes or errors.

In addilion to the event code, two flags may be useful to classify the event into
major catcgorios and facilitale event processing by the user:

E flag: sct if evenl is an error

P flag: sct if permanent error {otherwise, retry may succeed)

Events are encoded in 8 bils, the two high order bits being reserved for E and P
flags, respeclively.

[Page 60] Postel

Scpltember 1978

Postel

TCP-4

Specification

Events spocificd so far are listed below with their codes and flag settings.

flags

mmT™

code

Lol el £ 2 e BN e B d g B) =

£ L) B = 0

meaning

general success

connection illegal for this process
unspecitfied foreign socket has
become bound

connection not OPEN

insufficient resources

forcign socket not specified
connection already OPEN

buffer slze not acceptible
unused

user timeout, connection aborted
unused

user urgent indication received
connection closing

general error

connection reset

Possible responses to each of 1he user commands are listed below.

Tupe
Typeo
Type
Tupe
Type
Tupe
Type
Type

[nenerall:
[opend s
[closel:
[urgentl
[Abort]:
18 [=end]:
28 [receivel!
38 [statusl:

SWMN=m

2 4, 11,1id, 14
8.1, 4, B, 13
8.1, 3, g, 13,14
8,1, 3,4,5, 9, 12,13,14
8,1, 3, 13
8,1, 3,4,5, 3, 12,13,14
8,1, 3,4, 7§, 12,13,14
g1, 3 13

[Page 61]

September 1978
TCP-4

TCP{Nctwork Inferface

The TCP calls on a lower level protocol module to actually send and receive information
over a nelwork. One case is that of the ARPA internetwork system where the lower level
module Is the Internet Prolocol [Postel78d) In most cases the following simple

inlerface would be adaquate,

The following two calls satisfy the requiremenis for the TCF to internet protocol module
communication:

SEND (dest, BufPTR, len)
where:

dest = deslination address
BulPTR = buffer pointer
len = length of buffer

Response:

Ok = sent ok
Error = error in arguments or local network error

RLCV (BulPTR)

Feoponse:

OK = received ok with the addtional information:

source address and lengih
Error = error in arguments or local hetwork error

When the TCP sends a segment, it executes the SEND call supplying all the
arguments. The internel protocol module, on receiving this call, checks the arguments
and prepares and sends the message. If the arguments are good and the segment is
accepled by the local network, the call returns successfully. If either the arguments
are bad, or the segment is not accepted by the local network, the call returns
unsuccessfully, On unsuccessful returns, a reasonable report should be made as to
the cause of the problem, but the details of such reports are up to individual
implement ations.

When a segment arrives at the internel protocol module from the local network, either
there is a pending RECV call from TCP or there is not. |n the first case, the pending
call is salisficd by passing the information from the segment to the TCP. In the

sccond case, the TCP is nolified of a pending scgment.

The nolification of a TCP may be via a pscudo interrupt or similar mechanism, as
appropriale in the parlicular operating system environment of the implementation.

[Page 62] Postel

Seplember 1978
TCP-4

A TCP's RECV call may lhen either be immediately satisfied by a pending segment, or
the call may be pending until a segment arrives.

We nole that the Internet Prolocol provides arguments for a type of service and for a
time to live. TCP uses the following scllings for these parameters:

lype of service = Priorily: none, Package: stream, Relibility: higher, Preference:
speed, Speed: higher; or 00110110,

time to live = one minute, or 00111100,

Poslel [Page 63]

TCP-4

Verificalion

[Page 64]

September 1978

Postel

September 1978

TCP-4
Verification
4. VERIFICATION
Requires further research.
[Page 65]

Poslel

September 1978 _
TCP-4

Implementation

[Page 66] Postel

September 1978
TCP-4

Implementation

5. IMPLEMENTATION

5.1. What Not to Leave Out

e

§.2. User Interfaces
7?7

5.3. Mechanisms
Siruclure of the TCP

Any parlicular TCP could be viewed in a number of ways. It could be implemented as an
independenl process, servicing many user processes. It could be viewed as a set of
re-entrant library roulines which share a common inlerface to the local PSN and common
buffer slorage. It could even be viewed as a set of processes, some handling the user,
some lhe input of segments from the net, and some the output of segments to the net.

We offer one conceplual framework in which to view the various algorithms that make up
the TCP design. In our view, the TCP is wrillen in two parts, an inlerrupt or signal driven
parl {consisting of five processes), and a recnirant library of subroutines or system calls
which inlerface the user process to the TCP. The subtoutines communicate with the
interrupt part through shared data struclures (TCBs, shared buffer queues efc.). The
five processes are the Output Segment Handier which sends segments to the segment
ewileh; the Segmentizer which formats letters into internet segments; the Input Segment
Handler which processes incoming segments; the Reassembler which builds letters for
users; and the Retransmitler which retransmits unacknowledged segments.

NOTA BENE: This model is purely conceptual and not recommended for any
conventional operating system with process switch times on the order of 1 ms.

Examples of such systems are: Multics, TENEX, UNIX, and ELF.

As an example, we can consider what happens when a user executes a SEND call to the
1CP service roulines. The buffer to be sent is placed on & send buffer queue associated
wilh the user's TCB. A “"Segmenlizer" process is awakened to create one or more
oulpul segments from the buffer. The Segmentizer attempts to maintain a non-empty
quoue of outpul segments so that the output handler will not fall idle waiting for the
scgmenlizing operation,

A major implementation issue is whether to use TCP resources or user resources for
incoming and oulpoing scgments. If the former, there is a fairness issue, both among
compeling conneclions and between lhe sending and receiving sides of the TCP.

When a segment is created, it is placed on a FIFO send segment queue associated with
its TCB. The Segmentizer wakes the Output Segment Handler and then continues to

Poslel [Page 67]

September 1978
TCP-4

Implementation

sepmentize a few more buffers, perhaps, before going to sleep. The Output Segment
Handler is awakened either by a "hungry" segment switch or by the Segmentizer. The
send segment queue can be used as a "work queue” for the Output Segment Handler.
After a segment has been sent, but usually before an ACK is returned, the Output
Segment Handler moves the segment to a relransmission queue associated with each
TCH.

Retransmission timcouts can refer to specific segments, or the retransmission gueue can
be periodically scarched for the limed-oul segments. If an ACK is received, the
refransmission entry can be removed from the relransmit queue. The send segment
quecue conlains only segments waiting 1o be senl for the first time.

Simullaneous reading and writing of the TCB queue pointers must be inhibited through
some sort of scmaphore or lockoul mechanism. When the Segmentizer wants to serve
the next send buffer queue, it must lock out all other access to the gueue, remove the
head of the queue (assuming of course that there are enocugh buffers for segmentization),
advance the head of the queue, and then unlock access lo the queue.

Incoming segmenls are examined by lthe Inpul Segment Handler. Here they are checked
for wvalid connection sockets and acknowledgmenis are processed, causing segments to
be removed, possibly, from the retransmit segment queue, as needed.

Segmenls which should be reassembled inlo buffers and sent to users are gueued by the
Inpul Segment Handler, on the receive segment queue, for processing by the reassembly
process. Tho Heassembler looks al its FIFO work queue and tries to move segments into
user buffers which are queued up in an inpul buffer quecue on each TCB. If a segment
has arrived out of order, it can be queued for processing in the correct sequence. Each
time a scgment is moved into a user buffer, the lefl window edge of the receiving TCB is
moved to the right so that oulgoing segments can carry the correct ACK information. If
the send buffer queue for the conneclion in question is empty, then the Reassembler
creales a segment lo carry the ACK.

As data is moved from segments into buffers, filled buffers are dequeved from the
reccive buffer queve and passed to the user. The Reassembler can also be awakened by
lhe RECEIVE user call should it have a non-empty receive segment queue with an empty
receive buffer queue.

Inpul Segment Handler

The Input Sepment Handler is awakened when a segment errives from the network. |t
firsl verifies that the segment is for an existing TCB (i.e,, the local and foreign socket
numbers are matched wilh those of existing TCBs). If this fails, a "reset" message is
constructed and sent to the point of origin.

The Inpul Segment Handler looks out for control or error information and acts
appropriately. For example, if the incoming segment is a RST (reset) request, and is

[Page 68) Postel

September 1978
TCP-4

Implementation

"believable”, then the input segment handler clears out the related TCB, empties the
associaled send and receive segment queues, and prepares error relurns for
oulslanding user SEND{s) and RECEIVE(s) on the reset TCB. The TCB is marked
unused and returned lo storage. If the RST refers to an unknown connection, it is

ipnored.

Any ACKs contained in incoming segmenls are used to update the send left window
edge and to remove the ACKed scgments from the TCB retransmit segment queue. If
the segmenl being removed was the end of a user buffer, then the buffer must be
dequeued from the segmentized buffer queue, and the user informed.

The sepmenl sequence number, lhe current receive window size, and the receive left
window edge delermine whether the segment lies within the window or outside of it.

Let

RCV.WHND = window size

] e size of sequence number space

RCV.SEQ = lefl window edpe

R = RCV.SEQ + RCV.WND = right window edge
b = sequence number to be fesled

For any sequence number, ¥, if
0 <= (x-RCV.SEQ) mod S < (R-RCV.SEQ) mod 5 (7}

lhen x is wilhin the window.

A segment should be rejected only if all of it lies outside the window. This is easily
tesled by letling x be, first lhe segment sequence number, and then the sum of
segment sequence number and segment length, less one in inequality 7 above.

The olher case to be checked occurs when the segment has both head and tail outside
of the receive window, bul includes the window.

Let

SEGLEN = segmenl lenglh

RCV.5EQ = lelt window edge

R = RCV.SEQ + RCV.WND = right window edge

H = SEG.SEQ = first sequence number in segment

T = SEG.SEQ + SEG.LEN - | = last sequence number in segment

Postel [Page 69]

TCP-4

September 1978

Implementation

For any segmenl ranging over sequence numbers [H,T}, if

0 <= RCV.SEQ - H < SEG.LEN

and

0 <= R - H < SEG.LEN (8)
then the segment includes the receive window.

If the segmenl length is zero (e.g, an ACK segment), tests should be performed as if
the segment lenpth were one lo accommodate the case when the receive window is
zoro.

If the segment lies outside the window, and there are no segments waiting to be sent,
then the Input Segment Handler should construct an ACK of the current receive left
window edge and queue il for output on the send segment queue, and signal the
Oulput Sepment Handler. Successfully received segments are placed on the receive
segmenl queue in the appropriate sequence order, and the Reassembler is signalled.

The scgmenl window check can not be made if the ascociated TCB has not received a
SYN, so care must be laken to check for control and TCB state before doing the

window check.

Reassembler

The Reassembler process is aclivaled by both the Input Segment Handler and the
RICEIVE user command. When the Reassembler is awakened, it looks at the receive
sepment queue for the associated TCB. If there are some segments there, then it sees
whelher the receive buffer queue is empty. If it is, then the Reassembler gives up on
this TCB and goes back to sleep; otherwise, if the first segment matches the left
window edpe, then the scgmeni can be moved into the user’s buffer. The
Reassembler keeps transferring scgments into the user's buffer until the segment is
cmply or the buffer is full. MNote that a buffer may be partly filled and then a
sequence "hole" be encountered in the receive segment queue. The Reassembler
must mark progress so that the buffer can be filled up starting at the right place when
the "hole™ is filled. Similarly a segment might be only partially emptied when a buffer
is filled, so progress in the segment must be marked.

If a letler was successfully transferred to a user buffer, then the Reassembler signals
lhe user thal a leller has arrived and dequeues the buffer associated with it from the
1CH receive buffer queue. If the buffer is filled, then the user is signaled and the
bulfer dequeued as before. The evenl code indicates whether the buffer contains all

or parl of a lctler,

Of course, the sequence number processsing s adjusted to take into account the
EOL.

[Page 70] Postel

Seplember 1978

TCP-4

Implementation

In every case, when a segment is delivered to a buffer, the receive left window edge is
updaled, and lhe Segmentizer is signaled. If the send segment queue is empty, then
the Reassembler must create a segment to carry the ACK and place it on the send
sepment queue. '

Segmentizer

Foslel

The Scgmenlizer process gets work from both the Input Segment Handler and the
SEND user call. The signal from the SEND user call indicates that there is something
new to send, while the one from the Input Segment Handler indicates that more TCP

buffers may be available from delivered segments.

When the Scgmentizer is awakened it looks at the send buffer gueue for the
associated TCB. If there is a new or partial letter awaiting segmentization, it tries to
segmentize the letter, TCP buffers and window permitting. For every segment
produced, it signals the Output Segment Handler (to prevent deadlock in a time sliced
scheduling scheme). If a 'run lo completion’ scheme is used, then one signal only
nced be produced -- the first time a scgment is produced since awakening. If

segmentization is not possible, the Segmentizer goes o sleep.

If a partial butfer was transferred, then the Segmentizer must mark progress in the
send buffer queve. Compistely segmentized buffers are degueued from the send
buffer queue and placed on a scgmentized buffer queue, when an ACK for the last bit

is received the send buffer is returned to the user.

A SYN must logically precede the first data transmitied on a connection. When the
Srpmenlizer segmentizes a letter it must see whether it is the first pisce of data being
<enl on the connection, in which case it must include the SYN bit, or cause a SYN
sepment 1o be sent before the data segment. Some implementations may choose not
to send data with SYN, and some may choose to discard any data received with SYN.

Qulput Segment Handler

When activated by the Segmentizer, the Input Segment Handler, or some of the user
call roulines, the Output Segment Handler attempts to transmit segments to the
network (lhis may invelve going through some other network Interface program).
Transmitled scgments are dequcued from the send segment queue and put on the
relransmil queue along with the time whon they should be retransmitted,

All data scgments that are (reflransmitted have the latest receive left window edge in
lhe ACK field. Some error messages may set the ACK field to refer to a received

segment’s sequence number.

[Page 71]

September 1978
TCP-4

Implementalion

Relransmitler

This process can eilher be viewed as a separale process or as part of the Cutput
Segment Handler. Its implementation can wvary; it could either perform its function by
bring awakened at regular intervals, or when the retransmission time occurs for every
segmenl pul on the retransmit queue. In the first case, the retransmit queue for each
TCB is examined fo see if there is anything to retransmit. If there is, a segment is
placed on the send segment queue of the corresponding TCB. The Output Segment

Handlor is also signaled,

A "demon® process monitors all user send buffers and retransmittable control
messages sont on each connection, but not yet acknowledged. If the global
relransmission timeoul is exceeded for any of these, the user is notified and the

conneclion aberled.

Nole thal, since relransmilted segments carry the latest receive left window edge and
acknowledgment information, the checksum may require recomputation,

In some cases it may be useful to repackape segments on the retransmission queue
into now scgmenls more in kecping with current window Information, or to take
advanlage of an parlial acknowledgment of a segment.

5.4, Dala Structures

Transmission Control Block

It is highly likely thal any implementation will include shared data structures among parts
of the TCP and some asynchronous means of signalling users when letters have been

cdelivered.

Onc typical data structure is the Transmission Control Block {TCB) which is created ﬁhd
maintained during the lifetime of a given connection. The TCB contains the following

information (ficld sizes and content are notional only and may vary from one
implementation to another):

Local connection name: 16 bits
Local socket: 48 bils
Local address: 32 bils
Lacal porl: 16 bits
Forcign sockel: 48 bils

Foreign address: 32 bils

[Page 72] Postel

September 1978
TCP-4

Implementation

Foreign pnrt: 16 bits
Receive window size in octets: 16 bils
Receive left window edge (next sequence number expected): 32 bits
Send window size in octets: 16 bils
Send left window edge (earliest unacknowledged octet): 32 bits
Nexl sepmenl sequeonce number to send: 32 bils

Lasl sequence number used to update send window (to make sure that only the most
rocent window information is used): 32 bits

Initial Send Sequence Number: 32 bits
Initial Receive Sequence Number: 32 bils
Send Buller Size: 16 bits
Receive Buffer Size: 16 bits
Send Urgent Pointer: 16 bits
Receive Urgent Pointer: 16 bils
Conneclion stale: 4 bits

See figure 2 for basic stale diagram.

CLOSED (0), OPEN (l), SYN-SENT (2), SYN-RECEIVED (3), ESTABLISHED (4),
CLOSE-WAIT (5), FIN-WAIT (6), CLOSING (7).

Foreipn connection specification (UUNUT,UP): 4 bils

UN is set if the foreign network was not specified in the OPEN command. UT is
sel i the foreign TCP was not specified in the OPEN command. UP is set if the
foreipn Port was not specified in the OPEN command. U is set if any of UN, UT,
or UP are sel. UT implies UP and UN implies bolh UT and UP. UN, UT, and
UP are used lo remember the specificily of the foreign socket at the initial OPEN
so lhal a RST (resel) will return the foreign socket to its proper state. U is reset
(i.c., made false) when a SYN is rcceived, but may be set again on receipt of RST,
depending upon UN, UT, or UP. Once in the ESTABLISHED state, UN, U.T, and
UP can be resel, since the connection will not return to OPEN on receiving RST
aller it has become ESTABLISHED.

Relransmission imeout: 16 bits

Postel [Page 73]

September 1978
TCP-4

Implementation

Head of Send buffer queue [buffers SENT from user to TCP, but not segmentized]:
16 bits

1ail of Send buffer queue: 16 bits

Pointer to last octel segmentized in partially segmentized buffer (refers to the buffer
al the head of the queue): 16 bils

Head of Send segment queue: 16 bits

Tail of Scnd segmenl queue: 16 bils

Head of Segmentized buffer queue: 16 bits
Tail of Segmenlized buffer queue: 16 bils
Hoad of Relransmit segment queue: 16 bits
1ail of Relransmit segment queue: 16 bits

Head of Receive buffer queue [quoue of buffers given by user o RECEIVE letters, but
unfilled): 16 bils

Tail of Receive buffer queue: 16 bils

Head of Receive segment queue: 16 bils

Tail of receive segment queue: 16 bits

Poinler to last octet filled in receive buffer: 16 bils

Poinler o next octet to read from partly emptied segment: 16 bits

Mote: The above two puinler.s refer to the head of the receive buffer and receive
segmenl queues respectively.

Forward TCB pointer: 16 bits
Backward TCB pointer: 16 bits
E5. Program Sizes, Performance Data
m
5.6. Test Sequences, Procedures, Exerciser

e

[Page 74] | Postel

September 1978

TCP-4

Implementation

5.7. Parameler Values: Timeouls, Segment Sizes, Buffer Strategies

Much work nceds to be done in this area slill, but we do have the following discussion on
buffers and windows, and the inleraclion thereof; and some comments on retransmission
packaging.

Buffer and Window Allocation

Fostel

The TCP manapes buffer and window allocation on conneclions for two main purposes:
equilably sharing limited TCP buffer space among all connections {multiplexing function),
and limiting atlempts to send secgments, so that the receiver is not swamped (flow control
funclion). For furlher details on the operalion and advantages of the window mechanism

sce [CK741

Good allocalion schemes are one of the hardest problems of TCP design, and much
exporimentalion musl be done lo develop efficient and effective algorithms. Hence the
following suppcstions are merely inilial thoughts. Different implementations are
encouraped with the hope that results can be compared and better schemes developed.
For comments on some allocation policies and other factors effecting communication

performance see [GIP77, Sunshine?7c])

The SEND Side

The window is determined by the receiver. Currently the sender has no control over
the send window size, and never tranmsmils beyond the right window edge. An
cxceplion is made in the case of a zero send window when it is necessary to
periadically relransmit to poll for a window opening ACK.

Buffers musl be allocated for outgoing segments from a TCP buffer pool. The sending
1CP may nol be willing to allocale a full receiver's window's worth of buffers, so
bulfer space for a connection may be less than what the window would permit. No
deadlocks are possible even if there is insufficient buffer or window space for one
letler, since the receiver will ACK parls of letters as they are put into it’s user's buffer,
thus advancing the window and freeing buffers for the remainder of the letter.

It iz not mandatory that the TCP buffer outgoing segments until acknowledgments for
them are received, since it is possible to reconstruct them from the actual buffers
senl by the user. However, for purposes of retransmission and processing efficiency,

it is very convenient to do.

[Fage 75]

TCP-4

September 1978

Implementation

The RECEIVE Side

[Page 76]

Al lho receiving side there are two requirements for buffering:

{1} Rale Discrepancy:

If the sender produces dala much fasler or much slower than the receiver
consumes il, little buffering is needed to mainlain the receiver at near maximum
rale of operation. Simple qucuing analysis indicates that when the production and
consumption (arrival and service) rates are similar in magnitude, more buffering is
necded lo reduce the effect of stochastic or bursty arrivals and to keep the

roceiver busy.

(2} Disorderly Arrivals:

When sepments arrive out of order, they must be buffered until the missing
segments arrive so that segments (or Ietters) are delivered in sequence. We do not
advacale the philosophy that they be discarded, unless they have to be, lest a poor
effective bandwidth may be observed. Path length, segment size, traffic level,
rouling, timeouts, window size, and other factors may affect the degree to which
scgmenls arrive out of order.

The consideralions for choosing an appropriale window are as follows:

Suppose that the receiver knows the sender’s retransmission timeout, K. This s
usually close to the round trip transmission time. Suppose also that the receiver’s
acceplance rale is U bits/sec, and the window size is W bits. lgnoring line errors
and other Iraffic, the sender transmits at a rate between W/K and the maximum
line rate. The sender is permilled by the protocol to send at most a window’s

worlh of dala each timeout period.

If W/K is greater than U, the difference must be retransmissions, which are
undesirable, so the window should be reduced to W', such that W/K s
approximalely equal to U, This may mean that the entire bandwidth of the
transmission channel is nol becing used, but it is the fastest rate at which the
recciver is accepling data, and lho line capacily is free for other users. This is
cxaclly the same as the case where the rates of the sender and receiver are almost
equal, and so more buffering is needed. Thus we see that line utilization and
relransmissions can be traded off against buffering.

If the receiver docs not accept data fast enough (by not performing sufficient

RICEIVEs), the sender may continue retransmitting since the unaccepted data will
nol be ACKed, In this case the receiver should reduce the window size to

"throtlle” the sender and inhibit useless refransmissions.

Limiled experimentalion, simulation, and analysis with buffering and window allocation
sugpest that the receiver should set aside buffer space to accommodate any window

Postel

Seplember 1978

TCP-4

Implementation

scnt lo the sender. Any allempts at optimistically setting a large window with
inadequate buffer appears to lead to poor bandwidth owing to occasional (or frequent)
discarding of arriving segments for which no buffers are available. Theoretically,
scleclion of the ratio of window size granted to buffer store reserved should be

equivalenl to the selection of a buffer size for a stalistical multiplexor.

If the user at the receiving side is not accepting data, the window should be reduced
to zero. In particular, if all TCP incoming segment buffers for a connection are filled
wilh received segments, the window must go to zero to prevent retransmissions until
the user accepls some segments.

Sclling the receive window to zero can have some inleresting side effects. In
particular, it is nol enough to merely send an empty ACK segment with the newly
non-zero window, when the window is re-opened. If lhe ACK is lost, the other TCP
may never transmit again. (ACKs cannot be retransmitted since they cannot,
themselves, be ACKed as we would not know when to stop retransmitting). A TCP
should therefore eontinue to send data {retransmissions) even when faced with a zero
window, albeit al a low rate. Design and discussion of several mechanisms have led to
the belief thal this is the simplest and least costly solution to the zero window

prablem.

Relransmission Packaging

Fostel

Insisting that SEG.SEQ (i.e, the first sequence number occupied by the segment) lie in
the RCV.WND could lead to deadlock in the case of alternate gateway routing and
differenl fragpmenlalion,

A Scenario:

Mssume the receivers RCV.SEQ is 1.
The sender transmils a segment (pl) containing data octets 1 through 8.

Galeway A fragments pl into two new segments, the first (p2) carries data octets 1
through 4, and the second {(p3) carries data octets 5§ through 8.

Scgment p? arrives al the receiver and is found acceptable. The receiver sets the
RCV.SEQ to 5.

Gateway A breaks,
The sender times out and relransmils pl as pd.
The receiver finds p3 afflicted with errors and discards il.

Galcway B fragments pd into three new segments, the first (p5) carries data octets |

[Page 77]

September 1978
TCP-4

through 3, the second (p6) carrics dala octets 4 through 6, the third (p7) carries
dala octets 7 and B,

When p5 arrives at the receiver it is acknowledged then discarded since it is
complelely below the RCV.SEQ.

When p6 arrives al the receiver it is acknowledged then if the special MAX function
were not used it would be discarded since it’s SEG.SEQ is below the RCV.SEQ.

A deadlock would develop if p6 were discarded, and if when the sender retransmitted
it always senl the complete contents of the original segment pl.

5.8. Debupging

"
HiH

[Page 78] | Postel

September 1978
TCP-4

Glossary

GLOSSARY

1822
BN Report 1822, "The Specificalion of the inferconnection of a Host and an IMP"

The specification of interface between a host and the ARPANET.

ACK
A conlrol bit (acknowledge) occupying no sequence space, which indicates that the

acknowledgment field of this segment specifies the next sequence number the sender
of this segment is expecting 1o receive, hence acknowledging receipt of all previous

scquence numbers.
i O e, O R —
A

ddress
An address is a variable length quantity (in multiples of octets).

ARPANET messageo
The unil of transmission between a host and an IMP in the ARPAMNET. The maximum

size ic aboul 1012 octels (8096 bits)

ARPAMET packet
A unit of transmission used internally in the ARPANET between IMPs. The maximum

size is about 126 oclets {1008 bils).

aar‘ —--._______..--—-1__=_,_.—-—
A control bit {Begin of Letler) occupying no sequence space, indicating tRat thi

ical letter with the first data octet in the segment.

cegment begi

BUF.S1Z
buffer size

bufifer size

An oplion (buffer size) used to slate the receive data buffer size of the sender of this
oplion. May only be sent in a segment that also carries a SYN.

conneclion
: A logical communication path identified by a pair of sockels.

Deslination
The destination address, an internet header field.

DF
The Don't Fragment bit carried in the internet header type of service field.

DGR
DalaGram Protocol: A host-fo-host protocel for communication of raw dala.

Postel [Page 79]

September 1978

TCP-4
Glossary

EOL
A control bit (End of Letter) occupying no sequence space, indicating that this segment
ends a logical letler with the last dala octet in the segment. If this end of letter causes
a less than full buffer to be released to the user and the connection buffer size is not

one oclel then the end-of-latter fbufier-size adjustment to the receive sequence number
must bo made.

FiM
A conlrol bit (finis) occupying one sequence number, which indicates that the sender
will send no more data or control occupying sequence space.

Flags
An internet header field carrying various control flags.

frapmont

A portion of a lopical unit of dala, in particular an internet fragment Is a purtitlun of an
internet segment.

Frapmenl Offset .
This inlerncl header field indicales where in the internet segment this fragment

belongs.
FTP

A file transfer protocol.
header

Conlrol information at the beginning of a message, segment, packet or block of data.
hosl

A computer. In particular a source or destination of messages from the point of view
of lhe communication network.

Identificalion .)
An inlernet header field identifying value assigned by the sender to aid in assembling

lhe frapments of a segment.

IHL
The internel header field Internet Header Length is the length of the internet header

measured in 32 bit words.

IMP
The Interface Message Processor, the packet switch of the ARPANET,

inlernct frapment
A portion of the data of an inlernet segment with an internet header.

inlernet packet
Either an internet segment or an internet fragment.

[Pape 80] Postel

September 1978
TCP-4

Glossary

internet scgment
The unil of data exchanged between an internct module and the higher level protocol

topcther with the internet header,

ISN
The Initial Sequence Number.

leader
Control informalion at the beginning of a message or block of data. In particular, in

lhe ARPANET, the control information on an ARPANET message at the host-IMP
inlerface.

left sequence
This is the next sequence number to be acknowledged by the data receiving TCP {or

the lowest currently unacknowledged sequence number) and is sometimes referred to
as the lefl edpe of the send window.

letler
A logical unil of data, in particular the logical unit of data transmitted between
processes via TCP.
LFT.SEQ
left sequence
local packet
The unit of transmission within a local network.
MF
The More-Fragments Flag carried in the internet header Flags field.
module

An implementation, usually in soflware, of a protocol or other procedure.

more-fragments-flag
A flap indicaling whelher or not this internet packet contains the end of an internet

scgmenl, carried in the inlernet header Flags field.

MSL
Maximum Segment Lifetime, the time a TCP segment can exist in the internetwaork
syslem.

nNFB -
The Number of Fragment Blocks in a portion of an internet segment. That is, the
lenpth of a portion of data measured in 8 octet units.

oclet

An eipght bit byte.

Postel [Page 81]

September 1978

TCP-4
Glossary

Oplions
= An Oplion field may contain several options, and each oplion may be several octets in

lenglh. The oplions are used primarily in testing situations; for example, to carry
timestamps. Both the Internetwork Protocol and TCP provide for options fields.

packel
A package of data wilh a heador which may or may not be logically complete. More
often a physical packaging than a logical packaging of dala.
Padding
b A Padding field is used to ensure that the data begins on 32 bit word boundary. The

padding is zero. Both the Internetwork Protocol and TCP provide for padding fields.

porl
The portion of a socket or addross that specifies which logical input or output channel
of a process is associated with the data.
process
A program in execution. A source or destination of data from the point of view of the
TCP or other host-to-host protocol.
Fs
A Packet Swilch. For example, an IMP.
PSN
A Packel Swilched Nelwork. For example, the ARPANET.
RCV.G5I'Q
receive sequence
RCV.WND

receive window

receive sequence
This is the next sequence number the local TCP is expecting to receive.

receive window :
This represents the sequence numbers the local (raceiving) TCP is willing to receive.

Thus, tho local TCP considers thal segments overlapping the range RCV.SEQ .to
RCV.SEQ + RCV.WND - 1 carry acceptable data or control. segments containing
scquence numbers entirely oulside of this range ere considered duplicates and

discardoed.

[Pape 82] ' Postel

September 1978
TCP-4

Glossary

RST
A conlrol bit (reset), occupying no sequence space, indicating that the receiver should
delete the connection without further interaction. The receiver can determine, based on
the sequence number and acknowledgment fields of the incoming segment, whether it
should honor the resel command or ignore if. In no case does receipt of & segment
conlaining RST give rise to a RST in response.

RTP
Real Time Prolocol: A hosl-lo-hest protocol for communication of time eritical
information. Fer ofﬁfﬁr'ﬁ: do m‘{ Aok .

SEGACK
sepment acknowledgment

SEGLEN
scpment lenglh

SEG.SEQ
scemenl sequence

sepment

A logical unit of data, in particular an inlernet segment is the unit of data transfered
belween a pair of internet modules, and a TCP segment is the unit of data transfered
belween a pair of TCP modules. In this document the word segment when used

without qualification means a TCP segment.

scgment acknowledgment
The srquence number in the acknowledgment ficld of the arriving segment.

scpment lenglh
The amount of sequence number space occupied by a segment, including any controls

which occupy scgquence space,

sepment sequence
The number in the sequence field of the arriving scgment.

send scquence
This is lhe next scquence number the local (sending) TCP will use on the connection. It

is inilially selected from an initial scquence number curve (ISN) and is incremented for
cach oclel of data or sequenced conlrol transmitied.

sond window
This represents the sequence numbers which the remote (receiving) TCP is willing to

receive. It is the value of the window ficld specified In segments from the remote (data
receiving) TCP. The range of sequence numbers which may be emilted by a TCP lies
belween SND.SEQ and LFT.5EQ + SNDWND - 1.

SND.SEQ

scnd seguence

Fostel [Page 83]

September 1978
TCP-4

Glossary

SND.WHND
send window

sochel
An address which specifically includes a port identifier.

Snur}.e
The source address, an internet header field.

SYN
A contral bit in the incoming segment, occupying one sequence number, used to

indicate at the initiation of a conncction, where the sequence numbering will start.

icp
Transmission Control Protocal: A host-to-host protocol for reliable communication in
internelwork environmenls.

Total Lenglh
The internet header ficld Total Length is the length of the internel packet in octets

including inlernet header and dala.

Type ol Service
An internel header field which indicates the type of service for this internet fragment.

LIRG .
A contral bit (urgent), occupying no sequence space, used to indicate that the receiving
user should be nolified to do urgent processing as long as there is data to be
consumed with sequence numbers less than the value indicated in the urgent pointer.

LIRG.PTR

urgenl pointer

urgent poinler
A control field meaningful only when the URG bit is on. This field communicates the

value of the urgent pointer which indicales the data oclet associated with the sending
user's urgent call.

Version
The Version field indicates tho format of the internet header.

XMET
A cross-net debugging protocol.

[Page 84] | Postel

Seplember 1978
TCP-4

Bibliography

1P781
BIBLIOGRAPHY -q/ Goro televamdt n? ine t) L.
o2

Motes of Working Group 6.1 of the Inlernational Federa;iﬂn of Information Processing (IFIP),
[also known as the Inlernational Network Working Group or INWG), are available through its

chairman,

Mr. Derek L. AL Barber,
Project EIN,

MNational Physical Laboralory,
Teddinglon, Middlesex, England.

Readers inlerested in a rich source of reference to the literature on resource sharing networks
arc urged to consult NBS special publication 384;

Helen M. Wood, Shirley Ward Walkins, Ira W. Cotlon

Annolated Bibliography of lhe Literature on Resource Sharing Networks

Nalional Bureau of Standards Special Publication 384

In=lilule for Computer Scicnces and Technology

Revised 1976

available from

Supcrintendent of Documents

U. 5. Governmen! Printing Office

Washinglon, D.C. 20102

order by SD Catalog No. C13.10.3B4frev

Stock No. 003-003-01670-5, $2.45
Special colleclions of papers on related subjects may be found in:

1. Wesley Chu (Ed.), Advances in Computer Communications, Artech House, 1876 {revised).

2. Robert Blanc and Ira Cotlon (Eds.), Computer Networking, IEEE Press, New York, 1976.
AR76

D. Aitwyver, A. M. Rybczynski, "Datapac Subscriber Interfaces,” Proceedings of ICCC76, p.
143-149.

Barber?6

Derek L.A. Barber, "A European Informatics Metwork,” Proceedings of ICCCTE, p. 44-50

BiN1ER2

fioll Beranck and Newman, "Specification for the Interconnection of a Host and an IMP,"
BN technical Reporl 1822, May 1978 (Revised).

Postel ' [Page BS]

September 1978

TCP-4
Bibliography

Delsnes?A

Dag Belsnes, "Note on Single Messape Communication,” INWG Protocol Note 3, IFIP Warking
Group 6.1, September 1974.

Belsnes74a

D. frlsnes, “Flow control in packel switching networks,” INWG Note 63, IFIP Working Group
6.1, Oclober 1974.

BLSS

Jerry D, Burchfiel, Elsie M. Leavilt, Sonya Shapiro, Theodore R. Strollo, TENEX USERS®
GUIDE, Bolt Beranck and Newman, Inc., Cambridge, MA, January 1975.

BLW74

Richard Bindor, Wai Sum Lai, Morris Wilson, "The Alchanet Menehune - Version I,° The
Aloha System Technical Report B74-6, University of Hawaii, September 1974,

Bi"M76

Jerry D. Burchficl, William W. Plummer, Raymond S. Tomlinson, "Proposed Revision to the
1CP," INWG Protocol Note 43, IFIP W.G. 6.1, September 1976.

Bripht 75

Roy D. Bright, "Expcrimenlal Packet Switch Project of the UK Posl Office, "In Computer
Communicalion Nclworks, Grimsdale and Kuo, Editors, NATO Advanced Studies Institute
Scries, 19-4, Noordhoff International, Leyden, Netherlands, 1975, pp 435-444,

BB

Jerry D. Burchfiel, Raymond S. Tomlinson, Michael Beeler, "Functions and Structure of a
Packet Radio Station,” AFIPS Procecdings, volume 44, 1975, National Computer Conference,
(Anahcim, CA, May 19-22, 1975), AFIPS Press, Montvale, NJ, 1975, p. 245-2561,

BW72

Robert Bressler and David C. Walden, "A proposed Experiment with a Message Switching
Prolocol,” ARPA RFC 333, NIC 9926, Augmentation Research Center, Stanford Research
Institute, Menlo Park, CA, May 1972,

Cashin/b

P.M. Cashin, "Datapac Nelwork Protocols,” Proceedings of ICCC76, P. 150.

[Page 86) I Postel

September 1978
TCP-4

Bibllography

CCC70

Stephen Carr, Stephen D. Crocker and Vinton G. Cerf, "Host-Host Communication Protocol in
the ARPA Nctwork,™ AFIPS Proceedings, 1970 Spring Joint Computer Conference, volume
36, (Allantic Cily, NJ, May 5-7, 1970}, AFIPS Press, Montvale, NJ, 1970, p. 589-598.

cns74

Vinton G. Cerf, Yogen K. Dalal, Carl Sunshine, "Specification of Internet Transmission Control
Program,” INWG General Note 72, IFIP Working Group 6.1, December 1974,

CLHKKS?7

Vinton G. Cerf, Stephen Edge, Andrew Hinchley, Richard Karp, Peter T. Kirstein, Paal Spilling,
"Final Report of the Internetwork TCP Project,” to appear.

Cerf74

Vinton G. Cerf, "An Assessmeni of ARPANET Prolocols,” The Second Jerusalem Conference
on Informalion Technology, (Jerusalem, lsracl, July 29-August 1, 1974), p. 653-664 (also,
INWG General Note 70, IFIP W.G. 6.1, July 1974 and in Network Systems and Software
Infolech State of the Art Report 24, Infotech Informalion, Ltd., Nicholson House, Maidenhead,

Berkshire, England, 1975.)

Cerl76

Vinlon G. Cerf, "SCCU/MCCU Characteristics for AUTODIN Il," Digital Systems Laboratory
Technical Note 92, Stanford University, July 1976.

Corl/6a

Vinlon G. Cerf, "TCP Resynchronizalion,” Digital Systems Lab Technical Note 73, Stanford
University, January 1976.

Cerl76b

Vinleon G. Cerf, “"ARPA Internetwork Protocols Projects, Status Report, for the period
November 15, 1975 - February 15, 1976," Digital Systems Laboratory Technical Note 83,

Slanford Universily, February 1976.

Corf7/

Vinlon G. Cerf, "Specification of Internel Transmission Control Program - TCP (Version 2),"
ICN B, March 1977.

Poslel [Page 87]

September 1978

TCP-4
Bibliography

Corl78

Vinlon G. Cerl, "A Proposed New Internet Header Formal," Advanced Research Projects
Apency, IEN 26, February 1978,

Cerf/78a

Vinlon G. Cerf, "A Proposal for TCP Version 3.1 Header Format," Advanced Research
Projects Agency, IEN 27, February 1978.

CGNYE
W. W. Clipsham, F. E. Glave, M. L. Narraway, "Dalapac Network Overview," Proceedings of
ICCCY6, p. 131-136.

CHMW 7]

W. Crowlher, F. Hearl, A. McKenzie, J. McQuillan, D. Walden, Network Design Issues, Bolt
Beranck and Newman, Inc. Technical Report No. 2918, November 1974 (also, INWG General
Nole 64, IFIP Working Group 6.1, October 1974; ARPA Network Measurement Note 26,

Nelwork Measurement Group, Oclober 1974).
CHMP 7?2

Slephen D. Crocker, John F. Healner, Robert Metcalfe and Jonathan B. Postel,
"Function-Orienled Protocols for the ARPA Computer Network, AFIPS Proceedings, 1972
Spring Joint Computer Conference, volume 40, (Allantic City, NJ, May 16-18, 1972), AFIPS
Press, Monlvale, NJ, 1972, p. 271-275.

CK?4

Vinlon G. Cerf and Robert E. Kahn, "A Protocol for Packet Network Intercommunication,”
IE Transactions on Communications, volume COM-22, Mo. 5, May 1974, p. 637-648. (An
carly version of this paper appeared as INWG General Note 39, IFIP Working Group 6.1,

Scplember 1973).

CMSZ75

Vinton G. Cerf, Alexander McKenzie, Roper Scantlebury, Hubert Zimmermann, "Proposal for
an Infernctwork End to End Prolocol," INWG General Nole 96, IFIP W.G. 6.1, September
1975 (also in ACM SIGCOMM Quarterly Review Vol. 6, No. 1, Jan 1976.) p. 63-89

[Pape BH] I Fostel

September 1978
TCP-4

Bibliography

CMS5778

Vinlon G. Cerf, Alexander McKenzie, Roger Scantlebury, Hubert Zimmermann, “Proposal for
an Internctwork End to End Transport Protocol,” Revision editors: A. Danthine, M. Gien, G.
Grossman, and C. Sunshine; INWG General Note 96.1, IFIP W.G. 6.1, February 1978.

CP78

Vinlon G. Cerf and Jonathan B. Postel, “Specification of Internetwork Transmission Control
Program - TCP Version 3," Information Sciences Institute, ICN 21, January 1978.

C571

Vinton G. Cerf and Carl Sunshine, "Protocols and Gateways for the Interconnection of Packet
Swilching Networks,” The Aloha Syslem Technical Report CN 74-22, Proceedings of the
Seventh Hawaii International Conference on Syslems Sciences, University of Hawaii, {Honoluly,
Hawaii, January 8-10, 1974),

Dalal? A

Yopen K. Dalal, "More on Selecling Sequence Numbers, " INWG Prolocol Note 4, IFIP
Working Group 6.1, August 1974, Also in Proceedings of the ACM SIGCOMM/SIGOPS
Interprocess Communications Workshop, (Santa Monica, CA, March 24-25, 1975}, and ACM
Operating Syslems Review, Volume 9, Number 3, July 1975, Association for Computer
Machinery, New York, 1975,

Dalal?s

Yoren K. Dalal, "Eslablishing a Connection,"INWG Protocol Note 14, IFIF Working Group 6.1,
March 1975,

Danlhine7%

Andre Danthine and E. Eschenauer, “Influence on the Node Behavior of the Node-to-Node
Prolacol," Praceedings, Fourth Data Comm. p 7-1 to 7-8.

Davics71

Donald W. Davies, "The Control of Congestion in Packet Switching Networks," Peter E.
Jackson, proceedings, ACM/IEEE Sccond Symposium on Problems in the Optimization of Data
Communicalion Sysiems, (Palo Alte, CA. October 20-22, 1971), IEEE (at -71C59-C, p.
46-19,

Postel [Page 839]

September 1978

TCP-4
Bibliography

DCATS

Syslem Performance Specification for Aulodin ll, Phase 1, Defense Communications Agency,
Defense Communication Engineering Center, November 1975.

DDLPR76

A. Danel, R. Despres, A. LeResl, G. Pichon, S. Rilzenthaler, "The French Public Packet
Switching Service: the TRANSPAC Network," Proceedings of ICCCT6, p. 251-260. :

FG75

Stanley C. Fralick and James C. Garretl, "Technological Considerations for Packel Radio
Nelworks,” AFIPS Proccedings, volume 44, 1975, NMational Computer Conference, (Anaheim,
CA, May 19-22, 1975), AFIPS Press, Montvale, NJ, 1975, p. 233-243.

FGS75

Howard - Frank, Israel Gitman, Richard wvan Slyke, "Packet Radioc System - Netwark
Consideralions,” AFIPS Proceedings, volume 44, 1975, National Computer Conference,
(Anahecim, CA, May 19-22, 1975), AFIPS Press, Montvale, NJ, 1975, p. 217-231.

FR78

Elizabelh Feinler and Jonathan Postel, ARPANET Protocol Handbook, Network Information
Center, Stanford Research Institule, Menlo Park, CA, January 1978,

GRP77

L. Garlick, R. Rom, and J Postel, "Reliable Host-to-Hosl Proltocols: Problems and
Techniques,” proceedings of the Fiflh Data Communications Symposium, {Snowbird, Utah),
ACM and IEEE, pp. 4.58-4.65, Seplember 1977.

Gs75

M. Giem and R. Scantlebury, "Interconnection of Packet Swilched Networks, Theory and
Practice,” proceedings of European Compuling Conference on Communication Networks,
EURQOCOMP, pp. 441-260, Brunel University, Online Conferences Lid, Uxbridge, England,
Seplember 1975,

HKOCW70

Frank E. Heart, Robert E. Kahn, S. M. Ornstein, William R. Crowther, and David C. Walden,
"The Inlerface Message Processor for the ARPA Computer Metweork,” AFIPS Proceedings,
1970 Spring Joinl Computer Confcrence, volume 36, (Atlanlic City, NJ, May 5-7, 1970),
AFIPS Press, Montvale, NJ, 1970, p. 551-567.

[Pape 90] . Postel

September 1978
TCP-4

Bibliography

INWG-P31

Internalional Nelwork Working Group, "Proposal for a Standard Virtual Terminal Protocol,”
INWG Prolocol Nole 91, IFIP W.G. 6.1, February 1978.

Kahn73

Robert E. Kahn, "Status and Plans for the ARPANET," Martin Greenberger, Julius Aronofsky,
James L. McKenney, William F. Massy, Networks for Research and Education: Sharing
Computer and Information Resources Nationwide, MIT Press, Cambridge, MA, 1973, p.

51-54,

Kahn75

Robert E. Kahn, "The Organization of Computer Resources intlo a Packet Radio Network,"
AFIPS Proceodings, volume 44, 1975, National Computer Conference, {Anaheim, CA, May
19-22, 1975), AFIPS Press, Montvale, NJ, 1975, p. 179-186.

Karp73

Pepry M. Karp, "Origin, Development and Current Status of the ARPANET,” COMPCON73 -
Seventh Annual [EEE Compuler Sociely International Conference, Digest of Papers,
'Compuling Networks from Mini's lo Maxi's - Are They for Real? {San Francisco, CA, February
27-28, March 1, 1973), Instilute of Elecirical and Electronic Engineers, Inc., New York,
1973, p. 49-52,

KC?71

Robert E. Kahn, William R. Crowlher, "Flow Control in a Resource-Sharing Computer
Nelwork," Peler E. Jackson, Procecdings, ACM/IEEE Second Symposium on Problems in the
Optimization of Data Communication Systems, (Palo Allo, CA. October 20-22, 1971), 1971,

IFEF (AT-71C59-C, p. 108-116.
Kleinrock 74

Leonard Kieinrock and William E. Maylor, "On Measured Behavior of the ARPA Network,
AEIPS Procoedings, Nalional Computer Conference, Volume 43, (Chicago, IL, May 6-10,
1974), AFIPS Press, Monlvale, NJ, p. 767-780.

Kleinrock7h

Leonard Kleinrock and Holger Opderbeck, "Throughput In the ARPANET - Protocols and
Measuremenl," Procecdings, Fourth Data Communicalions Sympoesium, (Quebec City, Canada,

7-9 Oclober 1975), p. 6-1 to 6-11.

FPostel . [Page 91]

September 1978

TCP-4
Bibliopraphy

Kloinrock76

Lconard Klecinrock, William E. Naylor, Holger Opderbeck, "A Study of Line Overhead in the
ARPANET,” Communicalions of the ACM, Vol. 19, No. 1, p. 3.

LGK75

David Lloyd, Martine Galland, Peler T. FKirstein, "Aim and Objectives of Internetwork
Expoeriments,” INWG Experiments Note 3, IFIP Working Group 6.1, February 1975,

Malhis76

James E. Mathis, T"Single-Conneclion TCP Specification,” Digital Systems Laboratory
Technical Nole 75, Stanford Universily, January 25, 1976.

MII76

Robert M. Metcalfe and David R. Bogps, "Ethernet: Distributed Packet Switching for Local
Compuler MNelworks,” Communications of the ACM, Volume 19, No. 7, July 1976, p.
395-404.

MCCW72

John M. McQuillan, William R. Crowlher, Bernard P. Cosell, David C. Walden, Frank E. Heart,
"Improvements in the Design and Performance of the ARPA Network, "AFIPS Proceedings,
Fall Joint Computer Conference, Volume 41, p. 741-754.

McKenzio /3

A. McKenzie, "Host-Host Protocol for the ARPANET," MIC 8246, Stanford Research Institute
[also in ARPANET Prolocols Notebook NIC 7104].

McKenzie74a

Alcxander McKenzie, "Some Computer Network Interconnection Issues,” AFIPS Proceedings,
Mational Compuler Conference, Volume 43, (Chicago, lll, May 6-10, 1974), AFIPS Press,
Montvale, NJ, p. B57-8569.

McKenzie71b

Alexander McKenzie, "Inlernetwork Host-to-Host Protocol,” INWG General Note 74, IFIP
Working Group 6.1, December, 1974,

[Pape 92] Postel

September 1978
TCP-4

Bibliography

MeQuillan7s

John M. McQuillan, "The Evolution of Message Processing Techniques in the ARPA Network,"
Nelwork Systems and Software, Infolech State of the Art Report 24, Infotech Information,
Ltd., Nicholson House, Maidenhead, Berhshire, England, 1975,

MPT74

Eric R. Mader, William R. Plummer, Raymond 5. Tomlinson, "A Protocol Experiment,” INWG
Experiment Nole 1, IFIP Working Group 6.1, August 1974,

NAC73

Network Analysis Corporalion, ARPANET: Deslgn, Operation, Management and Performance,
Nelwork Analysis Corporation, Glen Cove, NY, April 1973,

OK74

Holper ‘Opderbeck and Leonard Kleinrock, "The Influence of Control Procedures on the
Performance of Packet-Switched MNctworks, "National Telecommunications Conference, San
Diepgn, California, December 1974,

PGR76a

Jonathan B. Poslel, Larry L. Garlick, Raphael Rom, Transmission Contral Protocol
Specificalion, Augmentation Research Center, Stanford Research Institute, Menlo Park, CA,
15 July 1976,

PGR76b

Jonalhan B. Postel, Larry L. Garlick, Raphael Rom, Terminal-to-Host Protocol Specification,
Augmentalion Research Cenler, Stanford Research Inslitute, Menlo Park, CA,, 15 July 1976.

Portel 72

J. Postel, "Official Initial Connection Protocol," Current Network Protocols, Network
Information Center, Stanford Research Institute, Menlo Park, California, January 1972 (NIC -

7101).
Foslel?7

J. Poslel, "Assigned Numbers," RFC 739, NIC 4234], Information Sciences Institute,
Marina del Rey, California, 11 November 1977,

Maslel ' [Page 93]

September 1978

TCP-4
Bibliography

Foslel78a

Jonathan B. Poslel, "Draft Internetwork Protocol Specification - Version 2," Information
Sciences Institute, [EN 28, February 1978,

Postel78b

Jonathan B. Postel, "Draft Specification at Internetwork Transmission Control Protocol - TCP
Version 4," Information Sciences Institute, IEN 40, June 1978.

Postel7Bc

Jonathan B. Poslel, "Draft Internetwork Protocol Specification - Version 4, Information
Scicnces Institute, IEN 41, June 1978.

Poslel78d

Jonathan B. Postel, "inlernelwork Protocol Specification - Version 4," Information Sciences
Instilute, IEN 54, Scptember 1978,

Pouzin73

Louis Pouzin, "Interconncction of Packet Switching Networks," INWG General Note 42, IFIP
Working Group 6.1, Oclober 1973,

Fouzin73a

Louis Pouzin, "Presentation and major design aspects of the CYCLADES Computer Network,"
Data Notworks: Analysis and Design, Third Data Communicalions Symposium, St. Petersburg,
Florida, November 1973, pp. 80-87. Also in: Grimsdale and F. Kuo eds,, Computer
Communication Nelworks, NATO Advanced Studies Institute Series, E-4, Noordhoff, Lewden,

Netherlands, 1975, pp. 415-434,

Fouzinda

Louis Pouzin, "A Proposal for Inierconnecting Packet Switching Networks," INWG General
Nole 60, IFIP W.G. 6.1, March 1974. {also in proceedings of EURQOCOMP, Brunel University,
May 1974, p. 1023-1036).

Pouzin/db

Louis Pouzin, "Cigale, lhe Packet Switching Machine on the CYCLADES Computer Network,”
Jack L. Rosenfeld, Information Processing 74, procecdings of the IFIP Congress 1974,
Computer Hardware and Archilecture Volume, (Stockholm, Sweden, August 5-10, 1974),
American Elsevier Publishing Co., Inc,, New York, 1974, p. 2155-153.

[Pape 94] ' Postel

Seplember 1978
TCP-4

Bibliography

Relz75

David L. Retz, "ELF - A System for Network Access,” 1975 IEEE Intercon Conference
Record, (New York, April 8-10, 1975), Institute of Electrical and Electranic Engineers, Inc.,
MNew York, 1975, p. 25-2-1 to 25-2-5.

Roberts76

Lawrence G. Roberts, "International Interconnection of Public Packet Networks,” Proceedings,
International Conference on Computer Communication, (Toronto, Ontario, Canada, August

1976), p. 239-245.
RW70

Lawrence G. Roberls and Barry D. Wessler, "Compuler Network Development to Achieve
Retource Sharing,” AFIPS Procecdings, 1970 Spring Joint Computer Conference, volume 36,
(Allantic City, NJ, May 5-7, 1970), AFIPS Press, Montvale, NJ, 1970, p. 543-549,

RW73

Lawrence G. Roberts and Barry D. Wessler, "The ARPA Met," Norman Abramson and Franklin
F. Kuo, Computer-Communication Networks, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973.

Schantz?74
R. Schantz, "Reconnection Prolocol”, privale communication; available from Schantz at BBN.
SHYS

Adrian V. Stokes and Peler L. Higginson, "The Problems of Connecting Hosts into
ARPANET," Proceedings of the European Conference on Communication Networks,
Scplember 1975, On-line Conferences, Ltd, Oxbridge, England, p. 25-34.

Sunshine75

Carl Sunshine, "lssues in Communication Prolocol Design - Formal Correctness,” INWG
Protocol Note 5, IFIP Working Group 6.1, October 1975. Also in Proceedings of the ACM
SIGCOMM/SIGOPS Inlerprocess Communications Workshop, (Santa Monica, CA, March

20-25, 1975),
Sunshinc76a

Carl Sunshine, Inlerprocess Communication Prolocols for Computer Networks, Stanford
Universily (Ph.D. Disserlalion), 1976.

Postel [Page 95]

September 1978

TCP-4
Bibliography

Sunshinc76b

Carl Sunshine, "Inlerconnection of Computer Networks," Computer Networks, Vol. 1, NO. 3,
January 1977, pp. 175-195.

Cunshine76¢

Carl Sunshine, "Efficiency of Interprocess Communication Protocols for Computer Networks,”
Transactions of the IEEE on Communications, February 1977, pp. 287-293.

SW71

R. Scanticbury and P.T. Wilkinson, "The Design of a Swilching System to allow remote Access
lo Computer Services by other computers and Terminal Devices,” Second Symposium on
Problems in the Optimization of Data Communication Systems Proceedings, Palo Alto,

Calitfornia, Oclober 1971, pp. 160-167.

Tomlinton74

Raymond S. Tomlinson, "Selecting Sequence Numbers,” INWG Protocol Note 2, IFIP Working
Group 6.1, Aupust 1974, Also in Proceedings of the ACM SIGCOMM/SIGOPS Interprocess
Communications Workshop, (Santa Monica, CA, March 24-25, 1975), and ACM Operating
Syslems Review, Volume 9, Number 3, July 1975, Association for Computer Machinery, New

York, 1975.

Tomlinson?/
Raymond 5. Tomlinson, “Proposal for TCP 3, ﬁRPﬂNET message number
<[HHIN-TENEXA]L 2-0ct-77 11:59.Tomlinson>, October 1977,

Walden?2

David C. Walden, "A System for Interprocess Communication in a Resource Sharing
Compuler Nelwork,” Communications of the ACM, Volume 15, lssue 4, April 1972, p.

72721-230.

WRY5

D. C. Walden and R. C. Rellberg, "Galeway Design for Computer Network Interconnection,’
Proceeodings, European Computing Conference on Communication Networks, September
1975, On-line Conferences, Lid, Oxbridge, England, p. 113-128.

Yhi7 6

S. C. K. Younpg, C. |. McGibbon, "The Control Systom of the Datapac Network," Proceedings
of ICCC76, p. 137-142.

[Page 96] I Postel

September 1978
TCP-4

Bibliography

ZE73

Hubert Zimmermann and Michele Elie, "Proposed Standard Host-Host Protocol for
Heterogeneous Computer Nelworks: Transport Prolocol,” INWG General Note 43, [FIP
Working Group 6.1, December 1973 (also Institute Recherche d'Informatique et
d"Automatique [IRIA] Project CYCLADES report SCM 5189).

fE74

Huberl Zimmermann and Michele Elie, "Transport! Prolocal Standard HostfHost Protocol for
tHeleropencous Computer Nelworks,” INWG General Note 61, IFIP Working Group 6.1, April
1974 (also IRIA Project CYCLADES Report SCH 519.1)

Jimmermann7b

Hubert Zimmermann, “The CYCLADES End to End Prolocol,” Proceedings, Fourth Data
Communicalion Symposium, (Quebec Cily, Canada, October 7-9, 1975), p. 7-21 to 7-26.

Foslel [Page 97]

September 1978
TCP-4
Appendices

[Page 98] . Postel

Seplember 1978
TCP-4

Appendices

APPENDICES

A. Recconnection Procedure

Porl idenlifiers fall into two calegories: permanent and transient. For example, a
Telnel-server process is generally assigned a paort identifier that is fixed and well-known.
Transienl processes will in general have port identifier’s which are dynamically assigned.

In a dislribuled processing environment, two processes that don't have well-known port
identifiers may often wish to communicate, This can be achieved with the help of a
well-known process using a reconneclion protocol. Such a protocol is briefly outlined using
the communication facilities provided by the TCP. |t essentially provides a mechanism by
which port identifiers are exchanged in order to establish a connection between a pair of

sockels,

Such a prolocol can be used to achieve the dynamic establishment of new connections in
order lo have mulliple processes solving a problem co-operatively, or to provide a user
process access lo a server-application process via a server-exec process, when the
scrver-cxec’'s end of the conncction can not be invisibly passed to the server-application
procoss.

A paper on this subject by R. Schanlz [Schantz74] discusses some of the issues associated
wilh reconneclion, and some of the ideas contained therein went into the design of the

prolocol outlined below.

In the ARPANET, a procedure (called the Initial Connection Protocol or ICP [Postel72]) was
implemented which would allow a process to connect to a well-known socket, thus making an
implicit request for service, and then be switched lo ancther socket so that the well-known
sockel could be freed for use by others. Since sockets in our TCP are permitted to
parlicipale in more than one connection name, this facility may not be explicitly needed (ie.,
conneclions <A,B> and <AC> are distinguishable). :

However, the well-known socket may be in one network and the actual service socket(s) may
be in another network (or al least in another TCP). Thus, the invisible switching of a
conncclion from onc port to another within a TCP may nol be sufficient as an "Initial
Connection Protocol”. Let Nx be a network identifier and Tx be a TCP identifier. We imagine
that a process wishes to use sockel NI.TL.Q to access well-known socket N2.T2,P. However,
the process associaled with sockel N2.T2P will aclually start up a new process somewhere
which will use N3.T35 as ils server socket. The N(i} and T{i}) may be distinct or the same.
The user will send to N2.T2.P the relevant user information, such as user name, password,
and accounl. This inlermediate server will start up the aclual server process and send to
M1.T1.Q the aclual service socket idenlifier: N3.T3.5. The connection (N1.T1.QN2.T2.P)
can then be closed, and the user can do a RECEIVE on (NL.TLQMN3.T3.5). The serving
process can SEND on (N3 T3SNLTIQ)N There are many varialions on this scheme, some
involving the user process doing a RECEIVE on a different socket {e.g, (NL.TLX,UU.W)} with
the server doing SEND on (N3.T3.5,N1.T1.X).

Poslel [Page 99]

September 1978

TCP-4
Appondices

Wilhou! showing all the detail of synchronization of sequence numbers and the like, we can
illustrate the exchange as shown below.

LSER SERYER

1. RECEIYE(NZ.T2.P,U.U.U)

1. SEND(N1.T1.Q,N2.T2.P)==>
<== 2, SEND(NZ2,T2.P,N1.T71.0)
Wwith "N3.T73.5" as data

2. RCCEIVE(N1.T1.Q,N2.T2.P)

3. CLOSC(M1.T1.0,N2.T2.P)==>
<== 3. CLOSE(N2.72.P,N1.T1.0)

4, RECEIVE(N1.T1.Q,N3.73.5)
<ce= &, SEND(N3.T3.5,N1.T1.0Q)

Reconnection Procedure Example
Figure 13

Al this point, a connection is open befween NL.T1.Q and N3.T3.5. A variation might be to
have lhe uscr do an extra RECEIVE on (NLTIXULUU) end have the data "N1.TL.X" be sent
in the first user SEND. Then, the server can start up the real serving process and do a SEND
on (N3.13.5NL.T1.X) wilhoul having lo send the "N3.T3.5" data to the user. Or perhaps
both server and receiver exchange this data, lo assure securily of the ultimate connection
{i.c., some wild process might try to connect to NI.TLX if it is merely RECEIVING on foreign

sockel UL

We do not propose any specific reconneclion protocol here, but leave this to further
deliberation, since il is really a user level protocol issue.

Furlher work on reconneclion is in progress and version 4 of TCP may include provisions for
reconnection via TCP control exchanpes.

[Pape 100] - Postel

