AM

Jon Postel

151
9 October 13978

! TCP Meeting Notes - 18 & 13 September 1978
Editors Note
This meeting was billed as a TCP testing session. The first hour or
so of the meeting was taken up with a discussion of what the various

implementors present expected their programs to be able to accomplish
Hith the programs of the other implementors.

i It became apparent that almost no useful demonstrations could be
performed due to the differences between the implementations.

The planned agenda uas discarded, and the meeting turned primarily
into a discussion of the specifications of TCP with a feu remarks
about testing procedures.
Much of the detail of the discussion of the TCP specifications will
be omitted from these notes, but the information will be conveuyed to
the specification editor for use in the next edition.

Oiscussion of the State of TCP Implementations
The TCP implementations available for testing at the meeting uwere:

SRI: TCP 2.5

BBN Tenex/Tops 28: TCP 2.X

UCLA: TCP &
BBN Unix: TCP 2.5
HIT Hultics: not ready
The state of BBN's Tenex and Tops 2B versions was explored in some
detail:
. Yerslon Commenta
2.5-8 Tested; BCPL, running at ISl; "old faithful"; has
resynchronization ARO, RSN, INT, etc.
2.5 Tested; BCPL & Monitor versions: running at SRI-KA;
= INT, RSN,ARQ removed, code cleansd up.
2.5+ Tested; Hand coded; running at BBND, BBMC; bugs

fixed.

Postel | [page 1]

f
f

g ncféber 1978
|

/

TCP Meeting Notes

2.5+2e Untested; fixes installed to attempt cures for all
/ reported bugs.
/ 4.8 Untested: will have rubber EOL, fragmentation and
/ reassembling (in internet modulel.
A schedule of uhen the represented sites would have TCP 4's ready for

!
testing was made up:

SAI: 1 Oct {Mathis)
UCLA: nou (Braden)
BBN Unix: 3 Oct (Haverty}
BBN Unixt 1 Nov {(Wingfield)
MIT-Hultice: 16 Oct {Clark)
BEN-Tenax: ? (P lummer}

Information was collected on the parameters for testing the various

TCP's

|
UCLA: ARPANET, IMP &1, HOST 1, LINK 155

port 1 talk program

contact: BRADEN@UCLA-CCN (213)825-7518

SRl ARPANET, IMPZ1, HOST 1, LINK 155
port 1 either a manually started traffic generator or a

telnet server

contact: MATHIS&SRI-KL

[415)326-628@

BBN-Unix: ARPANET, IMP B3, HOST B, LINK 155
port 1 talk program or sever telnet

Echo Server

traffic generator run from exec after login
from ARPANET via NCP

BBN-Tenex/Tops 2B: ARPANET, IMP 43, HOST 3, LINK 155

{ . port 23
port 9

port 19

port 7

{ port 13

[.

server telnet
sink

source

echo

daytime

A traffic generator available in exec via login from NCP

ARPANET connection.

!
/

Postel
/

/

/

f

Status report from BBN Tenex/Tops 28, BBN Unix, MIT-Multice, UCLA,
and CCA were circulated (see appendices).

[page 2]

—

9 DOctober 1978
TCP Meeting Notes

VYint stressed the importance of the work on TCP and noted that TCP is
a candidate for a DOD standard host-to-host protocol.

Early tests of TOPS 28 release 3 indicate that it is slouwer than
release 1 by as much as 25% to 38%. That is, the system is saturated
with about 3/4 as many jobs.

Arrangements uwill be made for login directories at BBNC, SRI-KA, and
MIT-Multics for testing of TCPs. The login name will be "TCP-TEST."
The passuord may be obtained from Yint.

Each implementor should prepare and circulate & one or tuo page
"users guide" for the other implementors.

Discussion of the TCP Speclfication
Checksaum
There uwas a good deal of discussion of wuhat should be checksummed.
It was concluded that for end-to-end reliability, the address
fields, the protocol field, and the length of the TCP portion
ghould be included in the checksum,

One way to think of this is to imagine @ pseudo header prefixed to
the TCP segment.

et L L L L

L SOURCE ADDRESS !
R i oS +

| ! DESTINATION ADDRESS !

| o ———————— - i

: ! ZERO ! PTCL ! TCP LENGTH !

{ fmm————— - 4

]

Note that the TCP length is a computed quantity which Is not
/carried in any header field. 1t is the Internet Header total
X length field value {octets) minus the Internet Header IHL field
f {32 bit units) when the IHL is adjusted to octets. The TCP length
/ does not Include the length of the pseudo header.
[
f There uas some discussion of explicitly including a data length
field as a hook to later provide a multiplexing function, but this
uas put off for consideration at the next Internet meeting.

Postel [page 3]

!
¢

/3 October 1378

TCP Meeting MNotes

Retransmission

There uas a good deal of discussion of retransmission strategy and
measures on uwhich to base a dynamic strategu.

Various "backoff" parameters were described. The most elaborate
is described in Plummer's memo on the TCP interface (see Appendix

El.

There are tuo problems that have the same symptoms--losing
segments due to poor communications media, and delayed segments
due to congestion. These tuwo problems call for distinctly
different solutions. In a lossy network, one would retransmit
more frequently: in a congested netuork, one would retransmit less
frequentiy.

Refusing Connection

It lg not ever made clear in the specification houw to refuse a
connection, or tell if a connection attempt was refused.
/

The follouing strategy is proposed:
/ 1§ the connection is passive (i.e., listening)

Hhen SYN arrives, send a2 SYN in response.

sk

1 a RST arrives, go back to listening.
I ¥ the connection is active (i.e., SYN-SENT)
1+ a RST arrives, the connection was refused.

To refuse a connectlion send a RST.

Haximum Segment Size

Hhat is the maximum segment that a TCP or Internet module must be
prepared to accept? This was discussed some, then put off to the
Internet Heeting. TCP implementors are encouraged to go on record
what the size they believe to be a reasonable upper bound. There
was some call for a mechanism to dynamically negotiate the upper
bound on segment slze.

[paga &l

9 October 1978
TCP Meeting Notes

f

!

Wall, {it was a TCP meeting so about half of the time was spent
discu?aing URGENT.

Urgent

The follouing rules seem to be the outcome:
1. The user must send data uith the URGENT.

2. An EOL with URGENT ensures prompt delivery of the data
.J to the user, but is not required.

3. The user is notified at the arrival of urgent data even
|f the user has no pending receive calls.

The urgent pointer points numerically te the octet just beyond
the urgent data.

T o L T
urvtututR!'R!'!R!'R
B T e B

A
urgent pointer

Discusalon of Higher Level Protocols

1. Buffer size - no higher level protocol shall be designed that
requires a particular buffer size.

2. Telnet - same as with NCP (neu telnet).
SYNCH le <IAC><DM> and urgent pointer.

3. FTP - lssue for 3rd party transfers requires use of PASY and SOCK
commands and passing socket number in response to PASY.

If uﬂ;r U uants to transmit a file from A to B

b U->A connect to socket 3
' U->B connect to socket 3

1 U->A PASY
' A-sU DK, my data socket is X
/ U-=B SOCK A,X
/' B->U OK
, U->A STOR file
f U->B RETR file
J B->A connect my Y to your X
Postel [page 51

Al

9 October 1878
TCP Meeting Notes

X should not be a well-knoun socket and should not have been
previously used by the server choosing it during this session.

f
Teats to be conducted before the next TCP meeting:

L Singjﬂ connection. Open & close a single connection many times.

! i
2. Multi connections. Open connections several simultanecusly. Tuo
connections to some socket (i.e., a-b and &-c) check proper
separation of data.

3. Half Open Connection. Open a connection, crash local TCP and
attenpt to open same connection again.

4. Piggy-back Loop. Open connections via Telnet.

ser telnet--->TCP--->TCP---»>server telnet
!

v
server telnet<---TCP<---TCP<---user telnet
1
v

user telnet--->...

5. Maximum connections. Open connections betueen a palr of TCP untll
efused or Worse.

6. Refused connection., Open a connection to a non-accepting socket,
does It get refused?

7. Zero Window, Try to send data to a TCP that is presenting & zero
Hindou.

8. Fire Hose. Hake many connections to data source ports (e.g.,
TTYTST at TENEX)

9. Urgent Test. Try to send data to a user program that only
receives data vhen 1n urgent mode.

18. Kamikazi Segment. Send and Receive NASTYGRAMS. A NASTYGRAM is a
segment with SYN, EOL, URG, and FIN on and carrying one octet of
data.

11. Sequence Wraparound. Test proper functioning shen sequence

numbers (a) pass Zu:31 [i.e., go from plus to "mirus") and (b) pass
29332 (l.e., go from 2:x32-1 to B).

Postel [page 6]

9 Dctober 1978
TCP Meeting Notes

12. Epffer size. HWith buffer size not equal to one, send data in
Iettqrﬁ of various sizes, use urgent occasional ly.

13. Send a NASTYGRAM into a half open connection when the sequence
number is about to wrap around.

Next ?;ating:
Next meeting Wwill be December 11 and 12, Monday and Tuesday, at ARPA.
Actjon Items:
Daveﬂgjark Hill urite something about URGENT.
?intIEQrf uill review the TCP specification.
The implementors will provide documents on TCPs, including internat
address, port number-function map, maximum segment size accepted,
point of contact with telephone number and sndmsg address. FPlummer,
Hingfield, Mathis, Haverty, Grossman, Kou Mei, Braden, Clark.
Bill Plummer uill provide old scenarios on SYN, etc.
Memos Distributed:
UCLA 368 TCP Status Report - Braden
HIT-Hultics TCP Status Report - Clark
CCA TCP Status Report - Kou Hei
BBM-Unix TCP Status Report - Haverty
BBN-Tenex TCP Status Report - Plummer
BBN-Tenax TCP JSYS5 Calling = Plummer
Internet Type of Service to Arpanet Parameter Mappings - Postel

Internet Notebook Table of Contents - Postel

IEN Index - Postel

Postel : [page 7]

f
[

9 October 1978
."J

JI_.
|

|
Attendegs:

Namg Affiliation
?idq Cerf ARPA
Jack Haverty BBN
Bill Plummer BBN
Mike Wingfield BBN
Ed Cain . OCEC
Aay MeFar land DoD
anny Cohen 151
on Postel 151
ava Clark MIT
Geoff Goodfellou SRI
Jim Hathis SRI
Bob Braden UCLA

Denis DOe La Roca UCLA
Yogen Dalal

Hai lbox

CerfzISIA

JHaver ty=BBND

P lummereBBNA
Wingfield=BBNE
DECE-R258=BBNB
HcFar land=ISIA
CohenzISIB

Poste lalS5IB
ClarkeMIT-NMultics
Geof f@SRI-KA
Mathisa5RI-KL
BradenzUCLA-CCN
Delaroca=UCLA-CCN
DalalsPARC

TCP Meeting Notes

[page &1

9 October 1978

TCP Meeting Notes

APPENDICES

APPENDIX A Braden

Postel

Implementation Status —- 1BH 368 TCP
Sepfembar 17, 1978

1. Philosophical Remarks

2.

5.

This implementation of the Internet and TCP protocols is

rdaaignﬂd to meet the follouing general objectives:

(a) operate umithin the existing NCP system job, sharing code
and control-block formats wherever possible;

(b) be compatible at the system-call level uith the existing
user-level protocol modules;

(c) Implement the Internet protocol as a distinct layer,
with interfaces designed to expedite the implementation of
other higher-level internet protocols in addition to TCP;

(d) require minimum NCP resources when internet protocol is
not In use.

Machine
IBH 368/378, uith a Santa Barbara interface to the INMP.
Operating System

DS/MVT, Release 21.8, uWith the addition of several user-uritten
Supervisor-call routines (including the Exchange program}.

Implementation Language

BAL (IBM's macro assembly language)

Code Size
Internet Protocol Layer: 4K bytes.
TCP Protocal Layer: 8K bytes.

User-leval protocol system-call
interface routines: 1K bytes.

[page 3]

9 October 1378

stel

TCP Meeting Motes
E;Jﬁuffur Space

Recelve: segment reassembly buffer=
max segment size + 16 bytes.

Send: 128 bytes per unacknouledged segment. Note: the actual

data being sent ie not counted here, as it occupies buffer

space belonging to the appropriate user-level protocol module.
7. Connectlions Supported:

Limited only by memory available in NCP job.

&. Cost Per Connection

Approximately 288 bytes fixed {excluding per-session control
blocks and user-level protocol work areas).

9. Delay Per Packet
Unhnn;n

18. Bandwidth
Unknoun

11, CPU Used

Unknoun

[page 18]

3 October 1378
TCP Meesting Notes

APPENDIX B Clark

MULTICS TCP

Preliminary Summary

15 September 1978

David D. Clark

Philosophical Remarks
1. This version is not designed to optimize efficiency. It Is
intended as a preliminary realization to debug our
understanding of TCP. (Efficiency should not be incompatible
vith this version though.)
2., This version has been designed to exist outsids the kernel
{to reduce our interaction with Honeyuwell}. [t can be moved In
later 1f efficiency Hould be enhanced thereby.

Hachine
Honeuyuel | G8/28

Dperating Sustem

~Multics

Implementation Language
PL/1

Code Size

(Preliminary) about 2K lines PL/1l (rough guess 18K words code)

i

Fuffer Space Used

| ? (Dynamic allocation)

Number of Connections Supported
No significant limit I know of

Cost Per Connection

?

Postel [page 111

9 October 1378
TCP Meesting Notes

Delay F"Ielr Packet

?7? H[ulll not measure this version)
Banduidth

?j" Same Comment)

CPU Utilization

/

: ? (Same Comment)
FqZ TCP Testing
} David O, Clark
Clark at MIT-Hultics
(617)253-6883

User Interface Is Changing

Postel [page 121

e

9 October 1378
TCP Maeting Motes

APFENDIX C Havertuy
BBN Unix TCP (Arpa Yersion)

Contact: Jack Haverty
Bolt, Beranek, and Neuman, Inc.
58 Houl ton Street

Cambr idge, Hass. BZ2138

[
JHAVERTYeBBND
R
jfhaaau-uwlx (host B3, octal 77)

lsy&r 491-1858 ext 133

|

1./ Philosophical Remarks

This note describes tuo TCP implementations. The TCP 2.5
implementation has been operational for over B months, It
/ consists of a core protocol-handling module based on the TCP11

/ program by Jim Mathis, encapsulated in a layer of code which

: interfaces to Unix. The TCP 4 implementation |s based on the
same structure as the 2.5 implementation, l.e. a core protocol
handler of TCP1l descent, encapsulated in a Unix-interface
fayer. The user interface is architecturally similar, changed
in detail for compatibility with TCP &4 and to improve
per formanca.

The TCP 4 implementation of the Unix-specific layer is
complete, up to the point of integration With the core protocol
module. This uill be done when the TCP1l code has been checked
out during tesating.

Testind of TCP 2.5 revealed severzal problems in performance,
which have been traced to inefficiencies within the Unix system
itself. In parallel with the TCP & implementation, the Unix

7 resources which are used by the TCP are being reworked to

i improve performance. Only minimal tests on TCP performance
havd been done to date, pending the changes to the system to
make such tests more realistic. The test results for the 2.5
|TP|EMEHtEt|Dﬂ are discussed belod.

The TCP implementations are fully described in the 'Unix TCP

ser's Guide’, BBN Report # 3724, along with a definition of
he user interface. The latter uill be updated slightly to

Postel [page 131

9 October 1978
TCP Meeting Notes

reflect the differences uith TCP 4. The current version is
available on request. An extract of the spec appears later.

TJE TCP is a single user-level process, which handles all TCP
traffic for the system. It is logically a part of the
operating system, but is implemented as a user-level process.
Standard Unix was modified to support additional inter-process
‘communication and control mechanisms to make this possible.

fThe inter face to user processes is via "ports', uwhich are
serial 1/0 paths betueen processes. This structure is somewhat
/;ﬂiffEFEﬁt than the one assumed by the TCP design, where a user
{ process passes 'buffers' to and from the TCP. The interface
to the TCP is strictly speaking defined by the formats of the
data passed on the ports. A library module for user processes,
written in C, is included to present a subroutine-lavel
interface to application programs.

The TCP 2.5 implementation has been reworked for TCP 4 to
change the structure someuwhat. Twe basic areas uere changed,
primarily because of the 'buffer-passing’ design of TCP1l. The
2.5 implementation was built on top of this interface, and
converted the buffers into a serial-stream model. The TCP &
implementation is somewhat different, in that it can use the
f serial data stream itself as a kind of reassembly buffer. In
; this implementation, incoming data is often able to be passed
y directly to the user process by transferring it into the port,
vwhen the packets arrive in order. Reassembly per se is done
f/ only when needed because packets arrive out of order, and is
handled in a8 fashion similar to fragment reassembly.

This latter change should have tuo major effects on the TCP & |
implementation. The avoldance of reassembly when packets
arrive in order reduces processing time as uell as delay in
presenting data to the user. Out-of-order data Is queued
pending arrival of the missing pleces. The first missing
piece, being in order, ls passed directly to the user process,
and then the other gueued pieces are processed. The effect |s
that the user process gets the 'next’ data as fast as possible,
since It bypasses most of the processing in the 2.5
implementation which was building buffers of data.

Il1. Hachine

/ The TCP is currently runnable on an 11748, running a modified
Unix. Development sork is done on the BBN 11/78. The network

Postel ! [page 14]

/

’

9 October 13978

Postel

TCP HMeeting Notes

interface code for the Unix system is being enhanced to permit
non-NCP use of the network simultaneously with normal TCP
operation. This addition Wwill permit operation of the TCP for
testing uithout disrupting normal sustem operation. We also
intend to test the TCP in communication with the TCP being
developed for the EON (autodin testbed] network, by running
both TCPs simul taneously on the same machine.

The 11/48 processor is not on the Arpanet directly, and can
only be accessed through a gateway, which must be modified to
handle the neu internet header formats. The 11/78 processor
till be directly accessible as Arpanet host E3.

I11. Operating System

The system being used at BBN on the 11/48B is a descendant of a
Rand version of Unix, modified at BBN to include neu
interprocess communication mechanisms which are required for
the TCP operation.

Txa 11/48 system has been integrated with an NCP unix system,

ich has all of the enhancements, and is now running on the

1/78 system. TCP 4 is intended to run on this system, which
ill replace the current 11/48 system.

IV/ Implementation Language

The TCP process Is written in Macro-11. 1t uses the Harvard
assembler, and a converter program to make the object files
conform to Unix formats. The library module Is written In C.

Code Size

The TCP process will use up to an entire 32K address space if
desired. The basic code size of the 2.5 implementation is 3876
words, An additional 246 words of data is used by the rau TCP
for buffers, etc. The remainder of a 32K address space can be

—gplit up into packet buffers and TCBs (1 per connection). Each

TCB uses 1B82 words, primarily because each containa 1824 words
devoted to reassembly and retransmission buffers.

The TCP 4 implementation is not yet integrated with the new
TCP11 code, so the exact code size is unknoun. If the TCP1l
code ls comparable in size to the old implementation, the TCP
Hlll also require approximately 4K of code space. The
remalnder Is available for buffers. In this implementation, no

[page 151

9 October 1978
TCP Meeting Notes

reassembly or retransmission buffers exist per se, but all
dynamical ly used data is obtained from the buffer pool.
Experimentation will be required to determine the appropriate
ratio of buffers to connections in any particular. The TCP
process Will function with as few as 2 or 3 buffers, in the
extreme case uhere only packets Which arrive in order are
accepted. Hore buffers can be specified when the TCP is
started, to provids resources for reassembly of out-of-ordar

arrivals.
¥I. Buffer Space Used

As mentioned above, when th TCF acts simply as a pipeline, it
Hill read a net packet, and immediately transfer its contents
. to the user process, using only the buffer({s) needsd to hold
the net message. More tupically, the system should probably
allocate at least 3 or 4 buffers per connection. Buffer sizes
are a parameter, currently set fairly small (188 butes) to
handle Interactive tupes of traffic. Bulk transfers are
handled by use of chained multiple buffers, This can also be
altered by parameter settings when the TCF is assembled.

¥il. Mumber of Connections

TCP 2.5 wuas limited primarily in its use of reassembly and
retransmission buffers. The number of connections supported
could not exceed approximately 25, due to address space
limitations.

The TCP 4 implementation uses a buffer pool, and hence does not
reserve any buffers for each connection. The primary
limitation here is the number of interprocess ports which the
Unix system will permit betueen the TCP and its customer
processes. A typical system might allou a similar number (25)
of connections, but this is also a system parameter.

J Tha implementation is designed to make addition of a feature
[which permits multiplexing of several TCP connections for a
process on a single port relatively easy, should this ever be

desirable.
o/ VI1l. Delay per Packet, Banduidth, CPU Utilization

These tests have been performed only for the 2.5
implementation, and then only to the point of recognizing the
problems inherent in the Unix support. The packet delay has

Fostel [page 1E1

9 October 1978

TCP Meeting Notes

f been on the order of 388 to 588 milliseconds, or more,

[
/

/

depending on the vagaries of the scheduler. {Note these times
are all for the 11/48 based systeml. Banduwidth seems to top
out at 5 kilobits/sec.

He performed one analysis of the system performance using the
port mechanism, which the TCP uses to interface to user
processes. These tests indicated a typical 125 millisecond
delay in sending through a port, and a per-read/urite overhead
of 4.5 milliseconds, which is deadly to character-at-a-time
1/0. The report compares use of ports, pipes, and disk [/0,
for the 11/48. 1t is available on reguest.

Tests Were also done with a typical 'user' process using the
TCP to support several comnections simul tansously,
communicating with several other processors via the network.
The CPU time spent in the two processes, in 'user code', and
*system code' is in the table belou,. for two different test
runs.

o User System
TCP B.S 4.9
User 2.9 13.8
TCP B.2 3.8
User 32 18.4

The ratios of user to system time clearly indicate the
bottleneck in the system, Which is now being reuworked to
improve the efficiency.

Extract from BBN report 3724, Unix TCP User's Guide

3.1 TCP+«listen

Fostel

The TCP«listen routine Is used to establish contact with the
TCP process. 1t sets up the command and response
porte betueen the user process and the TCP process, without

oppening any connections. [f called while the user
process is already actively wutilizing the TCP, it acts
as a reset command, aborting any open connections

before attempting to re-establish contact uwith the TCP
process. TCP+liaten must be successfully called before any

TCP connections may be opened.

f [page 17]

9 October 1978

Poatel

f
{

TCP Heeting Notes

Calling Sequence!

[TCPeListenitm)s

vhare:
int tm: fv timeout, in seconds @/

Function:
Establishes contact betueen the user process and the TCP

process. lf called while TCP activity is in progress, resets
by aborting any open connections.

Arguments:
tm -- timeout value, i.e. hou long in seconds TCP«listen
should wait for the TCP process to reply

Returns:
TRUE if succesaful, FALSE on error

Posaible Error Codes:
EEARPRTICXI]1 -- open of TCP ear port failed
-- message send failed
ERSPPRTICXIY] -- couldn't create response port
-- error in read from response port
-- bad response received

= ENOBUFSII] -- couldn't allocate buffer
" ECHMDPRT [C) -- unable to open command port
ETCPNRDY [X] —= TCP not responding within time specified

3.2 TCPequit

The inverse operation to TCP«listen is performed by the
TCP+quit routine, TCPequit will cleanly break the
communication paths to the TCP. I1f any connections were still
open, they will be aborted (see TCP+abort). This routine
should be called when TCP activity is complete, In order
to release the resources allocated uwithin both the wuser
process and the TCP process. Killing the user process
ulll have the same effect as calling TCPequit.

Calling sequence:
TCPeguit{):

Function:
Finishes usage of the TCP by the user process. Releases all

resources, and gborts any remaining connections.

[page 18]

9 October 1978

Postel

d

TCP Meeting Motes

Arguments:
None

Returns:
TRUE

'Possible Error Codes:

' None

E.EEITEFﬁhpan

If
Hill return a pointer to @ structure termed a user
tranamission control block, or utcb, which is used to identifu
the connection for other routine calls. The connection
itself is not necessarily ‘established’ in the TCP
sense, since the call to TCP«open returns before the TCP
process begina the handshake procedure uith the foreign TCP.

)

The TCPe<open routine is used to create a TCP connection.
The parameters of the connection are specified bu a
connection address block structure, or cab. The contents of
the structure specify the address of the foreign socket as
well as the local address components which the user is
permitted to specify. A mask is also supplied to specify
which events Will trigger the issuance of change-notices, as
discussed with the TCPereceive specifications.

the connection is accepted by the TCP process, TCP«open

Calling Sequence:
pt=TCPOpenlc, tm, f}

Hhere:

struct cab #c 3 /+# specifies connection &/
Int tm ; /#% in seconds &/

char f ; /% mode of opening %/
struct utcb npt 3 /% if successful #/
Function:

Creates a TCP connection, obtaining a pointer to a utcbh to
be used for subsequent data transfers. Optionally begins
establishment of the connection uwith the foreign TCP.

Arguments:
c -- a cab structure, as defined belou
tm —— time to allow for the TCP to reply to the open request
f -- mode bits. Assigned bits are:
Bl -- open as a listen-only connection

[page 191

9 DOctober 1978

Poatel

TCP Heeting Notes

Returns:
TRUE, pointer to utcb, FALSE on error

Possible Error Codes:

ETCPNROYIX] -- TCP took too long to respond
ECHMOPRTIC] -— error in use of command-port
ERSPFRT [CY] -— error in use of response-port
ETCPBADIV] —— illegal message from TCP process
(hot conforming to the protocol)
EUNKR IV} -- unknoun type of message from TCP
ENOBUFSIIX] -- either the user process or TCP

process is short of buffer space
ESNDPRTICIX] -- couldn’t open send-port
ERCVPRTICIXY] -- couldn’t open recelve-port
-~ error in reading from receive-port
-- megsage received violates protocol

EUSRC 1) ~-- too many connections In this process
ESYSC [X] -- too many connections system-wide
ESYSF [X] -- too many processes using TCP

EITNUS [X] —- connection already open by someone
EILLS U] -- jllegal local port specification

The connection to be opened is specified by a cab
{connection address block) structure, defined as fol lous.

struct cab {
char c+lph /+ local port, high byte «/

char cexxl /v used internal lu #/

int celpm /% local port, lou 2 bytes #/

char c+fnid 1 /i destination net #/

char ceftidh 3 /% destination TCP id high byte #/
int ceftid 3 /+ destination TCP id low 2 bytes =/
char c~fph 3 /% destination port high byte &/
char c+xx2 3 fw used internally #/
Cint c+fpm /% destination port lon 2 butes &/
Int c+~cnmask i /% change-notice mask &/

3.4 TCPe«close

The TCP«close routine Is used to initiate a close procedure. It
Hill cause the TCP process to transmit a close reguest to the
foreign TCP. The TCPeclose routine Will return as socon as
the close command Is accepted by the TCP process. The
connectlion uill remain open until the close procedure has
been completed. The user process may wait for a

[page 28]

9 October 13978

Poatel

e

.,'|,_ '|.|

TCP Heeting Notes

change-notice to arrive which signals the completion of the
closa procedure. Attempts to send data will be ignored.

Calling Sequence:
TCP«close(pt, tm)

Hhers
struct utch #pt i /% from TCPeopen @/
int tm : o timeout &/

Function:
Begins the close procedure.

Arguments:
pt -- pointer returned by TCP+open
tm == timeout limit in seconds

Returns:
TRAUE if successful, FALSE on error

Possible Error Codes:
ETCPHRDY [X) == TCP took too long to respond

ECHOPRT IC] -- grror in use of command-port
ERSPPRTICY] -~ error in use of response-port
ETCPBAD [¥] -- illegal message from TCP process

{not conforming to the protocol)
EUNKR IY] -- unknoun tupe of message from TCP
ENOBUFS[IX] =-- buffer shortage

3.5 TCPe«abort

The TCP+abort routine, if called before a close procedure
has completed, serves to destroy the specified TCP
connection, Without waiting for the foreign TCP to
acknouledge. It also serves the purpose of cleaning up
the tables and buffers which were allocated to the connection.

Calling Sequence:

TCP+abortipt, tm)

uhere

struct utcb wpt ; f+ from TCP+open +/
int tm g fve timeout o/
Function:

Destroys a TCP connection, and releases all resources
assigned to the connection.

[page 211

9 October 1978

Poste!

TCP Meeting Notes

Arguments:

pt -- pointer obtained from TCP+open
tm == timeout limit in seconds
Returna:

TRUE if successful, FALSE on error
L
Poasible error Codes:
ETCPNROY [X] ~- TCP took too long to respond
ECHOPART IC] -— error in use of command-port

ERSPPRTICY] -- error in use of response-port
ETCPBADLY] -- illegal message from TCP process

{not conforming to the protocol)
EUNKR [V] —- unknoun type of message from TCP
ENDBUFS [X] -~ buffer shortage

3.E TCPesend

—

The TCP+send routine is used to send data over a TCP
connection. It requires as an argument @ pointer to a utch,
as returned by TCP«open. Data given to TCP+send s
buffered internally for transmission to the TCP process.
Therefore, TCP«send will actually do 1/0 to transfer data to
the TCP process only when the internal buffer fills, or when it
is instructed to send immediztelu. Large data transfers
will be split into smaller chunks for transfer to ths TCP
process. The TCPestatus routine can be used to obtain
information concerning the buffer sizes being used.

Tuo suitch parameters to the TCPesend routine are wused to
control Initiation of data transfer. Either the 'go’ or
the 'eol® flag uill cause the transfer of the current data
buffer Wwithin the user process to the TCP process even If the
buffer is not full. The 'eol® flag is also used to indicate
that the last bute of the supplied data should also be marked
as end-pf-letter.

-

Calling Sequence:
TCP+sendipt, b, |, go, eoll;

where

struct utch #pt § /& from TCPeopen &/

char #b 3 {# pointer to data «/

int 1 3 /% length of data in buytes &/
int go ; Jwe "go' flag v/

int eol ; - /v "eol” flag #/

[page 221

39 October 1378
TCP Heeting Notes

Function:
Send a data stream over a TCP connection.

Arguments:
pt -- pointer from TCP«open
b -- pointer to bute stream to be sent

| —— number of bytes to send

go -- boolean, If true, send immediately

eol -- boolean, |f true, indicate eol
{also send immediatelyl

d
I

Returns:
TRUE if successful, FALSE on error

Possible error codes:

(ESNDPRT [C] -= The communication path to the TCP process
{ for this connection is falling.
¢ ENOBUFSII] -- No internal buffers are available within

/ the user process.

{

'The flag arguments follou standard UNIX conventions for
/bnnlean values. TRUE implies that the flag i=s set.

3;? TCP«receive

{ The TCP+receive routine performs the inverse of TCP+send.

/' The wuser supplies TCP«receive Wwith a buffer area, into which
the Incoming data stream will be placed. TCPereceive accepts

| data from the TCP process in packages, transfers it

/ into the user-supplied area until either it is fllled, or

an |lncoming end-of-letter is encountered, or no more data Is

available.

| In addition to data, TCPereceive processes change-notices

/ received from the TCP process, and passes these on to the

f user, A change notice is simply a wuword of data which
encodes the occurrence of several possible state changes of
the connection, such as connection-establ | shed,
netuork-doun, remote-close-received, and so on. The user
process may use this information as desired. One possible
usage wWould be to trigger calls to TCPestatus when some
change-notice Is received, to obtain more detailed
information. An enumeration of the possible change-notices 1s
In Appendix D. The set of state changes uwhich to TCP«open for
tha connection In guestion.

Fugiai [page 231

9 October 1978
i TCP M=eting Notes

Calling Sequence:
cnt=TCP+receivelpt, b, |, ecl, flg)

vhere

atruct utcb wpt 3 /v from TCP«open s/

char «b /% buffer area &f

int | 3 /v maximum buffer length =/
int weol 3 /% set to indicate e-o-| =/
int %flg 3 /+ set to indicate type &/

int cnt /+# bytes received, if flg=8 «/
Function:

Receive a data stream from a TCP connection, or a
change-notice concerning the connection state.

Arguments:
pt -- pointer from TCPeopen
b -- pointer to area in which to place data butes

| - maximum number of bytes to be transferred

eal -- pointer to integer, to be set to indicate
end-of-letter,

flg —— pointer to integer, to be set to Indicate whether

data
or a change notice is returned
cnt -- number of bytes transferred if flg indicates data uas
received
Returns:

TRUE if something received:

if flg is FALSE, data was received, cnt is count of butes
placed into the user buffer

if flg Is TRUE, a change notice was received, and flg is the
change-notice value. No data was placed in the buffer.
FALSE if error, or if no data Was received., In the latter
case, the error code Will be zero.

Possible error codes:

ERCVPRTIC] -- i/o error on port from TCP
ETCPBADIY) -- unknown tuype of message from the TCP

Postel / [page 24]

9 Dctober 1378

TCP Heeting Notes

® APFENDIX D P lummer

TCP for TENEX and TOPS52B

There are tuwo TCP implementations for TENEX. One is written in
BCPL and runs as a normal user mode program. The other is hand
coded in MACRD-18 assembluy language and is part of the monitor.
The hand coded version may be run as part of either the TENEX
monitor or TOPS28 monitor on 18387, Model A or Model B KLZ2B
processors running release 1818 or 3A of the TOP528 monitor, or
the 2828 running TOP528. The BCPL version of the TCP runs only
under TENEX, houever.

The hand coded TCP was wuritten in order to obtain higher
performance. Code produced by the BCPL compiler uas estimated to
be roughly five times as large as well structured hand code. MHith
fewer Instructions to execute, the assembly language version
should see a comparable decrease in execution time. As it turned
out, the BCPL TCP has more than 24,888 (decimal) instructions and
the hand coded version has feuer than 5B83. The execution time of
a standard benchmark program sau a reduction of a factor of eight
in_ execution time. Some of this improvement was due to the fact
that the overhead associated with JSYS traps and the netuwork
interface are not present in the monitor version.

The benchmark program is TCPTST, a program which sends 1888,
single-byte messages to itself. Since this program keeps eight
buffers outstanding on both the send and receive sides, someuhere
betueen 125 and 1BBB acknouledgment packets will be processed in

the reverse direction, Three harduare configurations are
avallable: sending to self via the INP, via @ loop back plug on a
special "Raw Packet Interface” (an 1822 meant to connect to a

remote gateway machine)l, or using a software bupass which avoids
interfaces for packets destined for "this" host. The benchmark
timings on BBND (18387, TOPS28 1B1B) for these three paths are 45,
38, and 11 seconds respectiveluy. On SRI-KA TENEX the Rau Packet

"Interface is not available, but using the IMP required 55 seconds

and the internal bypass 38 seconds. The BCPL TCP always uses the
IMP and took 438 seconds to complete on SRI-KA TENEX.

Informal measurements in the past have indicated that amount of
data in the packets does not strongly affect the processing time.
Rather, It Is the processing of the headers which consumes most of
the per-packet processing time. Some of the functions performed
in this respect are assligning 2nd releasing storage used for the

packet, composing the header®, inserting and checking the

Posatel

[page 251

9 October 1978
TCP Heeting Notes

checksum, sequencing tha packets uwhen received, and generating and
processing acknouledgements. The actual data transfer does not
seem to be a limiting factor at present.

There is speculation that there is still more speed up to be had.
Uhile the test program is running, the |ights on the computer seem

to indicate that it is not being fully consumed. Thus, the TCP is
occasional ly waiting for some event. [t might be that packets are
haingfthruun auay for internal reasons and that a retransmission
is required to restart the packet flow. HMore thorough metering is
planqﬁd so that efficiency Iissues such as the above may be
Inve?tigated.

The amount of buffer space available to the TCP is an assembly
time parameter. The BCPL wversion is typically generated with
165,888 (decimal) uords of free storage. The BBN-TENEX assembly
specifies the same amount while the version on SRI-KA has someuwhat
more than 6888 words. BBND hbhas only 1BE8 words due to the
shortage of monitor address space in the 1B1B release of TOPSZ8.
{Tha address scpace is consumed by tables to keep track of the
relatively large disk sustem and the 512K memory sustem.) The
release 3A monitor wWill permit the TCP to have almost all of a
full 256K address space for its free area.

Boughluy, the amount of storage S reguired to support C connections
" is 5 = 588 + 1B@88+«L. This estimate assumes several conditions:
First, only TELNET connections are being supported; that there is
only one listening (server) connection; that the connections are
fully active in the "normal" pattern; and that the process is not
the limiting factor. Thus, a larger number of connections can be
gsupported If only sporadic typing is involved, but a feuwer number
if there are large file transfers in progress. The TCP will
permit more connections than the formula predicts but performance
Hill be degraded if they simul tanecusly demand maximum resources.

Coptact for TCP Testing:

William W. Plummer {PLUMMER=BBN) Bolt Beranek and Neuman [ne.
58 Moulton Street

Cambridge, MA. B2138

(617) 431-1858 ext. 234

[page ZE]

!

? October 13978
! TCP Meeting Notes

APPENDIX E Plummer

In the folloding, a "JCN" may be thought of much as a JFN is for
TEMNEX files. A "Connection Block" {referred to belou) is
currently a 3-word block:

Hord-B: 24-bit Local Port
Hord-1: E-bit Foreign Metuork and 24-bit Foreign Host
Uord-2: 24-bit Foreign Port

{H:E. Yersion 3 TCP may have difference in addresses.)

All JSYS5"s take flags in the left half of AC 1.

Not 411 JSYS's look at all of the flags. Flag bits are:
{

Bit-B: RH has JCN rather than pointer to connection block
Bit-1: Uait for the JSYS5 to complete.
[Bit-5: ForceSync -- cause SYN to be sent when OPEN executed.

/ Bit-B: Persist -- keep resending SYN packet
r Bit-7: Return statistics (STAT call onlu)

Some JS5YSs take a "Retransmission Parameters" word., This is
controles the retransmission function. The right half is the
initial retransmission interval which is to be used. 1f the right
half is B, the initial interval will be computed based on the
measured round trip time. The left half of the parameters control
vword has tuo 3-bit guantities. In computing the next
retransmission interval from the previous one, the TCP multiplies
by the number in the leftmost 9 bits and then divides by the
number In the next 9-bit bute. Common backoff functions are:

SR1 PR demo: Mumerator=1, Denominator=l, Initial Interval=3.
{3 seconds constant retransmission intarﬁal uith no backoff)
BBN (vanilla}: Numerator=3, Dencminator=2, Initial interval=8.

{Used in "average" conditions involving congested gateways
and few dropped packets. 158% backoff from best guess
initial intervall.

BEN (old): Same as above but Z2BB% backoff.

Ouickly hits the 1 minute maximum interval and turns into
slou, constant period retransmission).

Postel [page 271

8 October 13978

Postel

TCP Heeting Notes

OPEN {JSYS 742)

f 1/ Flags,,Pointer-to-Connection-Block

2/ Persistence In seconds
3/ Retransmiesion parameters

OPEN
R+1: failure, code in ACl
R+2: 0¥, useable handle (& JCN, Job Connection

Mumber) In 1
Flags:

ForceSync: On to force sunchronization without any data
having been sent.

Llait: Don't return unti!| connection is opened.

Persistent: Keep trying by sending SYN packets
periodical ly.

CLOSE (J5YS 743)
1/ Flags,,JJCN-or-Pointer

CLOSE
R+1: faillure, code in ACl
R+2: 0K, connection fully closed.
Flags:
JCNSupp | i ed: On if ARH of 1 has a JCN. Off if RH has
Pointer-to-Connection Blk.
Hait: Wait for close to happen in both

directions.

[page 28]

9 October 1978
TCP Mesting Notes

SEND (JSY5 748)

1/ Flags,,JCN or Pointer-to-Connection-Block

2/ 8,,Pointer-to-Data-Ring
3/ TimelOut in Seconds (B for infinitel
4/ Retransmission parameters

SEND
R#l: failure, error code in 1
R+2: OK, JCN in 1
L IFIags:
: JCNSupp | i ed: (see above)
; Wait: (see above)

ata Buffer Ring Format (SEND, RECY):

Hord-8: Flags, ,unused (typically ptr to next buffer
header}
Word-1 B, .Address of data buffer

Hord-2 Hord/Byte count for this buffer
‘Flags:
| Done: Cleared when TCP receives this buffer. Set when
TCP has finished uith it.
/ Error: Buffer has an error in it.

/ EOL: Send an end-of-letter With this buffer. Or,
end-of-letter received nith this buffer.

A4

WordHode: Buffer is formatted as 36-bit butes., Off if
buffer has four 8-bit bytes per word.

RECY (JSY5 741)
(call Is same as SEND, but AC3 and AC4 are Ignored].

Postel [page 231

9 October 1978
TCF Heeting Notes

STAT (JSY5 745)

1/ Flags,,JCN or Pointer-to-Connection-Block
2/ -N,,Dffset into TCB
3/ -M,,Address In user's space

STAT
A+l: failure, error code in 1
R+2: OK. Hin(HM, N} words have besen transferred from

the TCB to the caller's space. The TCB offset
identifies where the tranafer starts and the
Address in user space identifies the start of
the destination area.

Flags:
JCNSupp | ied {see above)
Returns statitics: This flag causes the TCP to dump

words from the statistics area rather than a
specific TCB. Thus, the JCN is irrelevant.
The Source and Destination ACs are updated as
if a TCB were being dumped.

/Postel ! [page 381

9 Dctober 1978

/

Poatal

TCP Meeting Notes

CHANL (JSYS 746}

1/ Flags,,JCN or Pointer-to-Connection-Block
2/ Six B-bit bytes (channel numbers)

CHANL
R+l failure, error code in 1
R+2: OK. This fork will receive TCP PSls.
Flags:
JCNSupp| ied {(See above)

Each of the B-bit bytes may be 77 (octal) if no P5Is are
desired for the corresponding event.

Bita - 5: INTRP channel

Bits B-11: RECY buffer done

Bits 12-17: SEND buffer done

Bits 158-23: Error

Bits 24-29: State change (open or closel

Bits 38-35: EOL acknouledged. (Not implemented)

Note: PSIs for the above may be dropped or be YERY tardy.

Some serious defensive programming Is reguired to
guard against these problems. See TCPTST.HAC.

[page 31]

3 October 1978

Fostel

TCP Meeting Notes

ABORT (JSYS 747)

1/ Flags,,JCN or Pointer-to-Connection-Block

ABORT
R+1: error, code in 1
R+2: ‘DK. connection deleted
Flégsz
| JCNSupp | ied: {see above)

The local end of the connection is forgotten. An attempt to
notify the remote end is made by sending a AST packet,
Should this not be delivered, the other end uill discover

ite half open connection the next time it attempts to use
it.

A

[page 321

9 October 1978

TCP Meeting Notes

Ui fferences betuween "Honitor" TCPs on TEMNEX and TOPSZ8 and user
rode (BCPL)] TCP on TENEX,

[

i
i

/

/

o

Postel '

ABORT JSYS

ABORT is JSYS 733 with the user mode TCP. JSYS 747 does
something different.

STAT

The ability to dump the main statistics area Is not
implemented with the user mode TCP. Also, the STAT call
takes different arguments: AC3 is ignored uhile ACZ should
contain an ADOBJIN pointer (-N,,address) describing the space
being provided by the user for accepting a copy of the TCB
{starting at relative B in that TCB).

Retransmission control

The old TCP provides no facility for controlling the inltial
retransmiesion Interval or the backoff function.

No INTRP

The Monitor TCP does not have the INTRP (interrupt)
facilitu. This was never checked fully on the older TCP
since it Was never used and Will be replaced by the URGENT
scheme In version 3 of TCP.

[page 331

5 October 1378

TCP Meeting Motes

APFENDIX F Chuang

CCA's plans are to convert the SRl TCPll version & to operate
under RSX11M. Preliminary strategy uas mapped out using version
2.5 as a guide, but actual conversion will commence when Jim
Mathis is satisfied with his implementation of version 4.

CCA is also installing a "read and relay” facility on 1ts PSHF on
the ARPAnet. This facility uill permit the recording of a
bidirectional, rau, time-stamped packet stream betueen tuwo hosts
using any protocols. The recording may later be retrieved or
analyzed. The Record and Relay facility will be described more

fully at the October Internet meeting.

Kou-Hel Chuang

Postel [page 34]

