IEN-TH

Sequence Number Arithmetie

William W. Flummer

Bolt Beranek and Newman, Inc,
50 Moulton Street
Cambridge MA 02138

21 September 1978

Internet Experiment Note T4 21 September 1978
Sequence Number Arithmetic William W. Plummer

1. Introduction

TCP deals with 32-bit numbers for sequencing and acknowledging data. A
basic conecept is that of a "window", a range of sequence numbers which
begins at a "left" pointer and ends at a "right"™ pointer. Because a window
may contain sequence number zero, deciding whether a given number is within
a window is somewhat complicated. This paper describes some techniques for
dealing with sequence numbers as they apply te TCP.

2. Representation

The space of 2%#%¥32 sequence numbers will be shown as a (rouzh) cirecle:

| 2%E32 _ 1

Increasing |
Numbers H
e .

LI

Segments of seguence numbers will be shown as:

3 B o O O O OF O O 0

susannns PR |

Increasing numbers

] [
]]

Left Right

Note that Left is the the first number within the segment. Right 4is not
included. That is, the segment is semi-open. If Left = Right, the segment
is considered to have zero length, not 2%%32,

3. The CheckWindow Function

Because the sequence number space is actually a ring and arithmetie is done
modulo 2%#*32, thnere is no concept of one sequence number being greater (or
less) than another, The fundamental function for comparing sequence
numbera is CheckWindow(Left, Sequence, Right). This function returns true
if Sequence is contained in the semi-open segment between Left and Right.

Internet Experiment Note T4 21 September 1978
Sequence Number Arithmetie William W. Plummer

For machines with word sizes greater than 32-bits or using unsigned
arithmetic on 32-bit machines, the definition of CheckWindow is:

CheckWindow(L, S, R) := (L le R) =>
L le Sand S 1t R ,
not { R le 5 and S 1t L)

The second branch of the conditional is expressed in a way that it is the
complement of the first branch when L and R are interchanged. Advantage
iz taken of this symmetry in the PDP-10 code which implements CheckWindow.
Otherwise the second branch may be expressed as (R gt S) or (3 ze L).

The first branch of the conditional is explained by the following diagram:

X Q
rd . 0 {--= Right
Left -=> & x ¥ ¥ x o
o x * ¥ x o
0 x L ER S 3.4 X (5]
@ X ©
0 KAXXXXX ©
(4] (o]
QOOO000000

Key: esssss DPasic sequence space
#usEE% Seoment between Left and Right
ANXXAX Sequence space where Sequence 1t Right

oooooo Sequence space where Sequence ge Left

I

Internet Experiment Note T4 21 September 1978
Sequence Number Arithmetic William W. Plummer

The second branch of the conditicnal is the case where the segment crosses
zero:

0
| 2%%32 _ 1
i
| 0000
XXX o
oo (&
x REREE o
x * A o
x * o
Right -=> . ¥ ¢ <-- Left
Key: sases Sequence space

RE%%%® Segment between Left and Right
coooo Sequence numbers ge Left
EXHXK Sequence numbers 1t Right
A useful identity is: CheckWindow(L, 5, R) = not CheckWindow(R, S, L).

This says Gthat either 5 is in the segment between L and R or it is
not.

y, OverLap(L1!, R1, L2, R2)

OverLap(L?, R1, L2, R2) is a predicate which tells if the two segments L1
to R and L2 to R2 have at least one point in common. If an overlap
exists, then one segment must have its Left end within the other:

OverLap(L.1, R1, L2, R2) :=

CheckWindow(L1, L2, R1) or CheckWindow(L2, L1, R2)
Either L2 1is within segment one or it is not. 30 either CheckWindow(L1,
L2, R1) or not CheckWindow(L2, L1, R2) 4is true. In the first case there

is an overlap even if it is just at the point L2. The second term can be
rewritten:

Internet Experiment Note TU 21 September 1978
Sequence Number Arithmetic William W. Plummer

not CheckWindow(L2, L1, R2) = CheckWindow(R2, L1, L2).

Since L2 is outside segment one, it is the position of R2 which determines
whether an overlap exists. RZ2 can be either between L2 and L1 or it can
be between L1 and L2. Thus, there are twoc subecases: either
CheckWindow(L2, R2, L1) or CheckWindow(L1, R2, L2) must be true. In the
first ecase there 1is no overlap and segment one does not contain R2. If
the first case is not true then the second case must be since it is Gthe
complement of the first with the first and third arguments switched.

5. Inelude(L1, R1, L2, R2)

Inelude is true if segment one includes all of segment two. This is btrue
only if the complement of segment one does not contain any of segment two.

Include(L1, R?, L2, R2) := not Overlap(R1, L1, L2, R2)
= CheckWindow(L1, L2, R1) and CheckWindow(R2, R1, L2)

The expansion sktates GEthat L2 must 1lie in segment one and that the
complement of segment two must contain the right end of segment one.

6. Uses Within a TCP

The functions CheckWindow, Overlap, and Include have many uses within Gthe
TCP. A few of these are described below. Some definitions are needed. A
TCE contains a Send.Left cell, a Send.Window, and Send.Sequence bhaving Gto
do with packet generation. 3Send.Right does not exist explicitly but may be
computed by adding Send.Left and Send.Window (mod 2%¥32),

The receive side of a connection has the cells Recv.left and Reev.Window .
Again, Recv.Right may be easily computed.

Each packet has its sequence number Pkt.3eq and an acknowledzement number
Pkt . Ack3eq. The number called Pkt.End may be computed by counting one for
each control bit and data byte in the packet and adding this to Pkt.Seq mod
2%#32 . Hote that Pkt.End is actually the sequence number follewing the
packet. Currently only SYN and FIN occupy sequence space and these occur
only at the start and end of a connection; otherwise, all sequence space is
occupled by data only.

Internet Experiment Note TH 21 September 1978
Sequence Number Arithmetic William W. Plummer

These variables define several segments. The send window between Send.Left
and Send.Right, the receive window between Recv.Left and Recv.Right, and
the packet segment between Pkt.Seq and Pkt.End., All of these segments are
semi-open and are suitable for manipulation by the previously described
functions such as CheckMWindow.

The Retransmitter uses OverLap(Send.Left, Send.Right, Pkt.Seq, Pkt.End) to
tell if a packet has anything transmittable in it. HNote that Send.Right
may lie within the segment betwesen Send.Left and Send.Seq. This indicates
that the window shrank due to Send.Right having moved "backwards". In this
case data between Send.Right and Send.Seq is (temporarily) not
retransmittable,

The InputProcessor makes heavy use of all of the functions. The basic
accephance test for packets arriving on an ESTABLISHED connection is
OverLap(Recv.Left, Reev.Right, Pkt.Seq, Pkt.End). If this is not true, the
packet is assumed to be either from the future or a duplicate from the
paskt.

Processing the Acknowledgement field of a packet involves a scan of Gthe
retransmission queus bto see which packets may be deleted. For each packetb
on the queue CheckWindow(Send.Left, Pkt.End-1, Acknowledgement) is true if
the packet has been acknowledged. Pkt.End-1 is the sequence number of the
last byte in the packet. HNote that any packet on the retransmission queue
must occupy at least one sequence number and therefore no special case
checks must be made worry about Pkt.End=1 being less than Pkt.Seq .

TCF11 sends each newly Lyped character in a separate packet.
Retransmissions carry all unacknowledged data. TCF for the PDP=10/20 Lries
tc minimize internal storage requirements by saving a retransmitted packet
and releasing the storage for the original transmissions. Given a incoming
packet InPkt, the following test is performed against each packet gueued
for action by the buffer reassembler: Include(InPkt.Seg, InPkt.End,
QdPkt .Seq, QdPkt.End) means that the incoming packet contains at least as
much as the already gueued packet and that the latter may be released.

Internet Experiment Note T4 21 September 1978
Sequence Number Arithmetic William W. Plummer

I'n Sample Code

The following routines have been excerpted from the hand coded TCP for
TENEX and TOP320. They have been included here to provide an indication of
complexity. MNote that the PDP-10 has a 36-bit word size and thus 32-bit
nuabers are always positive. Operations such as CAM which are signed
compares on 36=bit quantites are unsigned operations on 32-bit numbers as
required.

: CheckWindow(Left, Sequence, Right)

: Test "Sequence" to see if it is between "Left" (inclusive) and "Right"
: (not incl.). Sequence numbers are modulo MAX3EQ and are always
; positive when represented in a 36-bit word.

1T/ Left

i T2/ Sequence

iT3/ Right

i

H CALL CHEWHND

:Bet+1: always. T1 non-zero if Sequence i3 in the window

CHKWND: : TEMP <VAL,SEQ,RIGHT,LEFT> ; Give names teo T1, T2, T3, T4
MOVEM T1,LEFT Make T1 available for value
SeT0 VAL, Init value to TRUZ
CAMG LEFT,RIGHT Crosses 07

TDZA VAL,VAL Ne. Set VAL to FALSE.

EXCH LEFT,RIGHT Yes. Reverse Left and Right.
CAMGE SEQ,RIGHT
CAMGE SEQ,LEFT
CAIA

SETCA VAL,
RESTORE
RET

i wE wE wWE W

Complement VAL,

-

By way of comparison, the BCPL expression for this compiles into
approximately 40 instructions on the PDP-10. This expression is:

let CheckWindow(L, S, R) := (L le R) => (L 1le S < R), (R le 3 < L)

Internet Experiment Note T4 21 September 1978
Sequence Number Arithmetic William W. Plummer

i Test to see if two sequence number segments have one or more common
i points. The two segments are semi-open on the right, similar
; Lo CHKWND.

;T1/ Left1

T2/ Right1

113/ Left2

s T4/ Right2

]

H CALL OVRLAP

jRet+1 always, T1 non-z.10 if overlap exists

OVRLAP::LOCAL <LEFT?!,LEFT2,RIGHT2> ; Define some local ACs.
MOVEM T1,LEFT1
DMOVEM T3,LEFT2 ; T3,T4 to LEFT2,RIGHT2
EXCH T2,T3
CALL CHKWND
JUMPN T1,0VRLAX
MOVE T1,LEFT2
MOVE T2,LEFT1
MOVE T3,RIGHT2
CALL CHKWND
OVRLAX: RESTORE
RET

