This is a purely informative rendering of an RFC that includes verified errata. This rendering may not be used as a reference.

The following 'Verified' errata have been incorporated in this document: EID 2263, EID 2480
Network Working Group                                           D. Mills
Request for Comments: 4330                        University of Delaware
Obsoletes: 2030, 1769                                       January 2006
Category: Informational

             Simple Network Time Protocol (SNTP) Version 4
                         for IPv4, IPv6 and OSI

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2006).


   This memorandum describes the Simple Network Time Protocol Version 4
   (SNTPv4), which is a subset of the Network Time Protocol (NTP) used
   to synchronize computer clocks in the Internet.  SNTPv4 can be used
   when the ultimate performance of a full NTP implementation based on
   RFC 1305 is neither needed nor justified.  When operating with
   current and previous NTP and SNTP versions, SNTPv4 requires no
   changes to the specifications or known implementations, but rather
   clarifies certain design features that allow operation in a simple,
   stateless remote-procedure call (RPC) mode with accuracy and
   reliability expectations similar to the UDP/TIME protocol described
   in RFC 868.

   This memorandum obsoletes RFC 1769, which describes SNTP Version 3
   (SNTPv3), and RFC 2030, which describes SNTPv4.  Its purpose is to
   correct certain inconsistencies in the previous documents and to
   clarify header formats and protocol operations for NTPv3 (IPv4) and
   SNTPv4 (IPv4, IPv6, and OSI), which are also used for SNTP.  A
   further purpose is to provide guidance for home and business client
   implementations for routers and other consumer devices to protect the
   server population from abuse.  A working knowledge of the NTPv3
   specification, RFC 1305, is not required for an implementation of

Table of Contents

   1. Introduction ....................................................2
      1.1. Specification of Requirements ..............................5
   2. Operating Modes and Addressing ..................................5
   3. NTP Timestamp Format ............................................6
   4. Message Format ..................................................8
   5. SNTP Client Operations .........................................13
   6. SNTP Server Operations .........................................16
   7. Configuration and Management ...................................19
   8. The Kiss-o'-Death Packet .......................................20
   9. On Being a Good Network Citizen ................................21
   10. Best Practices ................................................21
   11. Security Considerations .......................................24
   12. Acknowledgements ..............................................24
   13. Contributors ..................................................24
   14. Informative References ........................................25

1.  Introduction

   The Network Time Protocol Version 3 (NTPv3), specified in RFC 1305
   [MIL92], is widely used to synchronize computer clocks in the global
   Internet.  It provides comprehensive mechanisms to access national
   time and frequency dissemination services, organize the NTP subnet of
   servers and clients, and adjust the system clock in each participant.
   In most places of the Internet of today, NTP provides accuracies of
   1-50 ms, depending on the characteristics of the synchronization
   source and network paths.

   RFC 1305 specifies the NTP protocol machine in terms of events,
   states, transition functions and actions, and engineered algorithms
   to improve the timekeeping quality and to mitigate several
   synchronization sources, some of which may be faulty.  To achieve
   accuracies in the low milliseconds over paths spanning major portions
   of the Internet, these intricate algorithms, or their functional
   equivalents, are necessary.  In many applications, accuracies on the
   order of significant fractions of a second are acceptable.  In simple
   home router applications, accuracies of up to a minute may suffice.
   In such cases, simpler protocols, such as the Time Protocol specified
   in RFC 868 [POS83], have been used for this purpose.  These protocols
   involve an RPC exchange where the client requests the time of day and
   the server returns it in seconds past a known reference epoch.

   NTP is designed for use by clients and servers with a wide range of
   capabilities and over a wide range of network jitter and clock
   frequency wander characteristics.  Many users of NTP in the Internet
   of today use a software distribution available from  The
   distribution, which includes the full suite of NTP options,
   mitigation algorithms, and security schemes, is a relatively complex,
   real-time application.  Although the software has been ported to a
   wide variety of hardware platforms ranging from personal computers to
   supercomputers, its sheer size and complexity is not appropriate for
   many applications.  Accordingly, it is useful to explore alternative
   strategies using simpler software appropriate for less stringent
   accuracy expectations.

   This memo describes the Simple Network Time Protocol Version 4
   (SNTPv4), which is a simplified access paradigm for servers and
   clients using current and previous versions of NTP and SNTP.  The
   access paradigm is identical to the UDP/TIME Protocol, and, in fact,
   it should be easy to adapt a UDP/TIME client implementation, say for
   a personal computer, to operate using SNTP.  Moreover, SNTP is also
   designed to operate in a dedicated server configuration including an
   integrated radio clock.  With careful design and control of the
   various latencies in the system, which is practical in a dedicated
   design, it is possible to deliver time accurate on the order of

   The only significant protocol change in SNTPv4 from previous SNTP
   versions is a modified header interpretation to accommodate Internet
   Protocol Version 6 (IPv6) (RFC 2460) and OSI (RFC 1629) addressing.
   However, SNTPv4 includes certain optional extensions to the basic NTP
   Version 3 (NTPv3) model, including a manycast mode and a public-key-
   based authentication scheme designed specifically for broadcast and
   manycast applications.  Although the manycast mode is described in
   this memo, the authentication scheme is described in another RFC to
   be submitted later.  Until such time that a definitive NTPv4
   specification is published, the manycast and authentication features
   should be considered provisional.  In addition, this memo introduces
   the kiss-o'-death message, which can be used by servers to suppress
   client requests as circumstances require.

   When operating with current and previous versions of NTP and SNTP,
   SNTPv4 requires no changes to the protocol or implementations now
   running or likely to be implemented specifically for future NTP or
   SNTP versions.  The NTP and SNTP packet formats are the same, and the
   arithmetic operations to calculate the client time, clock offset, and
   roundtrip delay are the same.  To an NTP or SNTP server, NTP and SNTP
   clients are indistinguishable; to an NTP or SNTP client, NTP and SNTP
   servers are indistinguishable.  Like NTP servers operating in non-
   symmetric modes, SNTP servers are stateless and can support large
   numbers of clients; however, unlike most NTP clients, SNTP clients
   normally operate with only a single server at a time.

   The full degree of reliability ordinarily expected of NTP servers is
   possible only using redundant sources, diverse paths, and the crafted

   algorithms of a full NTP implementation.  It is strongly recommended
   that SNTP clients be used only at the extremities of the
   synchronization subnet.  SNTP clients should operate only at the
   leaves (highest stratum) of the subnet and in configurations where no
   NTP or SNTP client is dependent on another SNTP client for
   synchronization.  SNTP servers should operate only at the root
   (stratum 1) of the subnet, and then only in configurations where no
   other source of synchronization other than a reliable radio clock or
   telephone modem is available.

   An important provision in this memo is the interpretation of certain
   NTP header fields that provide for IPv6 [DEE98] and OSI [COL94]
   addressing.  The only significant difference between the NTP and
   SNTPv4 header formats is the four-octet Reference Identifier field,
   which is used primarily to detect and avoid synchronization loops.
   In all NTP and SNTP versions providing IPv4 addressing, primary
   servers use a four-character ASCII reference clock identifier in this
   field, whereas secondary servers use the 32-bit IPv4 address of the
   synchronization source.  In SNTPv4 providing IPv6 and OSI addressing,
   primary servers use the same clock identifier, but secondary servers
   use the first 32 bits of the MD5 hash of the IPv6 or NSAP address of
   the synchronization source.  A further use of this field is when the
   server sends a kiss-o'-death message, documented later in this memo.

      NTP Version 4 (NTPv4), now in deployment, but not yet the subject
      of a standards document, uses the same Reference Identifier field
      as SNTPv4.

   In the case of OSI, the Connectionless Transport Service (CLTS) is
   used as in [ISO86].  Each SNTP packet is transmitted as the TS-
   Userdata parameter of a T-UNITDATA Request primitive.  Alternately,
   the header can be encapsulated in a Transport Protocol Data Unit
   (TPDU), which itself is transported using UDP, as described in RFC
   1240 [DOB91].  It is not advised that NTP be operated at the upper
   layers of the OSI stack, such as might be inferred from RFC 1698
   [FUR94], as this could seriously degrade accuracy.  With the header
   formats defined in this memo, it is in principle possible to
   interwork between servers and clients of one protocol family and
   another, although the practical difficulties may make this

      In the following, indented paragraphs such as this one contain
      information not required by the formal protocol specification, but
      considered good practice in protocol implementations.

   This memo is organized as follows.  Section 2 describes how the
   protocol works, the various modes, and how IP addresses and UDP ports
   are used.  Section 3 describes the NTP timestamp format, and Section

   4 the NTP message format.  Section 5 summarizes SNTP client
   operations, and Section 6 summarizes SNTP server operations.  Section
   7 summarizes operation and management issues.  Section 8 describes
   the kiss-o'-death message, newly minted with functions similar to the
   ICMP Source Quench and ICMP Destination Unreachable messages.
   Section 9 summarizes design issues important for good network
   citizenry and presents an example algorithm designed to give good
   reliability while minimizing network and server resource demands.

1.1.  Specification of Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   document are to be interpreted as described in RFC 2119 [BRA97].

2.  Operating Modes and Addressing

   Unless excepted in context, a reference to broadcast address means
   IPv4 broadcast address, IPv4 multicast group address, or IPv6 address
   of appropriate scope.  Further information on the broadcast/multicast
   model is in RFC 1112 [DEE89].  Details of address format, scoping
   rules, etc., are beyond the scope of this memo.  SNTPv4 can operate
   with either unicast (point to point), broadcast (point to
   multipoint), or manycast (multipoint to point) addressing modes.  A
   unicast client sends a request to a designated server at its unicast
   address and expects a reply from which it can determine the time and,
   optionally, the roundtrip delay and clock offset relative to the
   server.  A broadcast server periodically sends an unsolicited message
   to a designated broadcast address.  A broadcast client listens on
   this address and ordinarily sends no requests.

   Manycast is an extension of the anycast paradigm described in RFC
   1546 [PAR93].  It is designed for use with a set of cooperating
   servers whose addresses are not known beforehand.  The manycast
   client sends an ordinary NTP client request to a designated broadcast
   address.  One or more manycast servers listen on that address.  Upon
   receiving a request, a manycast server sends an ordinary NTP server
   reply to the client.  The client then mobilizes an association for
   each server found and continues operation with all of them.
   Subsequently, the NTP mitigation algorithms operate to cast out all
   except the best three.

      Broadcast servers should respond to client unicast requests, as
      well as send unsolicited broadcast messages.  Broadcast clients
      may send unicast requests in order to measure the network
      propagation delay between the server and client and then continue
      operation in listen-only mode.  However, broadcast servers may

      choose not to respond to unicast requests, so unicast clients
      should be prepared to abandon the measurement and assume a default
      value for the delay.

   The client and server addresses are assigned following the usual
   IPv4, IPv6 or OSI conventions.  For NTP multicast, the IANA has
   reserved the IPv4 group address and the IPv6 address ending
   :101 with appropriate scope.  The NTP broadcast address for OSI has
   yet to be determined.  Notwithstanding the IANA reserved addresses,
   other multicast addresses can be used that do not conflict with
   others assigned in scope.  The scoping, routing, and group membership
   procedures are determined by considerations beyond the scope of this

      It is important to adjust the time-to-live (TTL) field in the IP
      header of multicast messages to a reasonable value in order to
      limit the network resources used by this (and any other) multicast
      service.  Only multicast clients in scope will receive multicast
      server messages.  Only cooperating manycast servers in scope will
      reply to a client request.  The engineering principles that
      determine the proper values to be used are beyond the scope of
      this memo.

      In the case of SNTP as specified herein, there is a very real
      vulnerability that SNTP broadcast clients can be disrupted by
      misbehaving or hostile SNTP or NTP broadcast servers elsewhere in
      the Internet.  It is strongly recommended that access controls
      and/or cryptographic authentication means be provided for
      additional security in such cases.

      It is intended that IP broadcast addresses will be used primarily
      in IP subnets and LAN segments including a fully functional NTP
      server with a number of dependent SNTP broadcast clients on the
      same subnet, and that IP multicast group addresses will be used
      only in cases where the TTL is engineered specifically for each
      service domain.  However, these uses are not integral to the SNTP

3.  NTP Timestamp Format

   SNTP uses the standard NTP timestamp format described in RFC 1305 and
   previous versions of that document.  In conformance with standard
   Internet practice, NTP data are specified as integer or fixed-point
   quantities, with bits numbered in big-endian fashion from 0 starting
   at the left or most significant end.  Unless specified otherwise, all
   quantities are unsigned and may occupy the full field width with an
   implied 0 preceding bit 0.

   Because NTP timestamps are cherished data and, in fact, represent the
   main product of the protocol, a special timestamp format has been
   established.  NTP timestamps are represented as a 64-bit unsigned
   fixed-point number, in seconds relative to 0h on 1 January 1900.  The
   integer part is in the first 32 bits, and the fraction part in the
   last 32 bits.  In the fraction part, the non-significant low-order
   bits are not specified and are ordinarily set to 0.

      It is advisable to fill the non-significant low-order bits of the
      timestamp with a random, unbiased bitstring, both to avoid
      systematic roundoff errors and to provide loop detection and
      replay detection (see below).  It is important that the bitstring
      be unpredictable by an intruder.  One way of doing this is to
      generate a random 128-bit bitstring at startup.  After that, each
      time the system clock is read, the string consisting of the
      timestamp and bitstring is hashed with the MD5 algorithm, then the
      non-significant bits of the timestamp are copied from the result.

   The NTP format allows convenient multiple-precision arithmetic and
   conversion to UDP/TIME message (seconds), but does complicate the
   conversion to ICMP Timestamp message (milliseconds) and Unix time
   values (seconds and microseconds or seconds and nanoseconds).  The
   maximum number that can be represented is 4,294,967,295 seconds with
   a precision of about 232 picoseconds, which should be adequate for
   even the most exotic requirements.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      |                           Seconds                             |
      |                  Seconds Fraction (0-padded)                  |

   Note that since some time in 1968 (second 2,147,483,648), the most
   significant bit (bit 0 of the integer part) has been set and that the
   64-bit field will overflow some time in 2036 (second 4,294,967,296).
   There will exist a 232-picosecond interval, henceforth ignored, every
   136 years when the 64-bit field will be 0, which by convention is
   interpreted as an invalid or unavailable timestamp.

      As the NTP timestamp format has been in use for over 20 years, it
      is possible that it will be in use 32 years from now, when the
      seconds field overflows.  As it is probably inappropriate to
      archive NTP timestamps before bit 0 was set in 1968, a convenient
      way to extend the useful life of NTP timestamps is the following
      convention: If bit 0 is set, the UTC time is in the range 1968-
      2036, and UTC time is reckoned from 0h 0m 0s UTC on 1 January

      1900.  If bit 0 is not set, the time is in the range 2036-2104 and
      UTC time is reckoned from 6h 28m 16s UTC on 7 February 2036.  Note
      that when calculating the correspondence, 2000 is a leap year, and
      leap seconds are not included in the reckoning.

      The arithmetic calculations used by NTP to determine the clock
      offset and roundtrip delay require the client time to be within 34
      years of the server time before the client is launched.  As the
      time since the Unix base 1970 is now more than 34 years, means
      must be available to initialize the clock at a date closer to the
      present, either with a time-of-year (TOY) chip or from firmware.

4.  Message Format

   Both NTP and SNTP are clients of the User Datagram Protocol (UDP)
   specified in RFC 768 [POS80].  The structures of the IP and UDP
   headers are described in the cited specification documents and will
   not be detailed further here.  The UDP port number assigned by the
   IANA to NTP is 123.  The SNTP client should use this value in the UDP
   Destination Port field for client request messages.  The Source Port
   field of these messages can be any nonzero value chosen for
   identification or multiplexing purposes.  The server interchanges
   these fields for the corresponding reply messages.

      This differs from the RFC 2030 specifications, which required both
      the source and destination ports to be 123.  The intent of this
      change is to allow the identification of particular client
      implementations (which are now allowed to use unreserved port
      numbers, including ones of their choosing) and to attain
      compatibility with Network Address Port Translation (NAPT)
      described in RFC 2663 [SRI99] and RFC 3022 [SRI01].

   Figure 1 is a description of the NTP and SNTP message format, which
   follows the IP and UDP headers in the message.  This format is
   identical to the NTP message format described in RFC 1305, with the
   exception of the Reference Identifier field described below.  For
   SNTP client messages, most of these fields are zero or initialized
   with pre-specified data.  For completeness, the function of each
   field is briefly summarized below.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9  0  1
      |LI | VN  |Mode |    Stratum    |     Poll      |   Precision    |
      |                          Root  Delay                           |
      |                       Root  Dispersion                         |
      |                     Reference Identifier                       |
      |                                                                |
      |                    Reference Timestamp (64)                    |
      |                                                                |
      |                                                                |
      |                    Originate Timestamp (64)                    |
      |                                                                |
      |                                                                |
      |                     Receive Timestamp (64)                     |
      |                                                                |
      |                                                                |
      |                     Transmit Timestamp (64)                    |
      |                                                                |
      |                 Key Identifier (optional) (32)                 |
      |                                                                |
      |                                                                |
      |                 Message Digest (optional) (128)                |
      |                                                                |
      |                                                                |

                        Figure 1.  NTP Packet Header

   Leap Indicator (LI): This is a two-bit code warning of an impending
   leap second to be inserted/deleted in the last minute of the current
   day.  This field is significant only in server messages, where the
   values are defined as follows:

      LI       Meaning
      0        no warning
      1        last minute has 61 seconds
      2        last minute has 59 seconds
      3        alarm condition (clock not synchronized)

   On startup, servers set this field to 3 (clock not synchronized), and
   set this field to some other value when synchronized to the primary
   reference clock.  Once set to a value other than 3, the field is
   never set to that value again, even if all synchronization sources
   become unreachable or defective.

   Version Number (VN): This is a three-bit integer indicating the
   NTP/SNTP version number, currently 4.  If necessary to distinguish
   between IPv4, IPv6, and OSI, the encapsulating context must be

   Mode: This is a three-bit number indicating the protocol mode.  The
   values are defined as follows:

      Mode     Meaning
      0        reserved
      1        symmetric active
      2        symmetric passive
      3        client
      4        server
      5        broadcast
      6        reserved for NTP control message
      7        reserved for private use

   In unicast and manycast modes, the client sets this field to 3
   (client) in the request, and the server sets it to 4 (server) in the
   reply.  In broadcast mode, the server sets this field to 5
   (broadcast).  The other modes are not used by SNTP servers and

   Stratum: This is an eight-bit unsigned integer indicating the
   stratum.  This field is significant only in SNTP server messages,
   where the values are defined as follows:

      Stratum  Meaning
      0        kiss-o'-death message (see below)
      1        primary reference (e.g., synchronized by radio clock)
      2-15     secondary reference (synchronized by NTP or SNTP)
      16-255   reserved

   Poll Interval: This is an eight-bit unsigned integer used as an
   exponent of two, where the resulting value is the maximum interval
   between successive messages in seconds.  This field is significant
   only in SNTP server messages, where the values range from 4 (16 s) to
   17 (131,072 s -- about 36 h).

   Precision: This is an eight-bit signed integer used as an exponent of
   two, where the resulting value is the precision of the system clock
   in seconds.  This field is significant only in server messages, where
   the values range from -6 for mains-frequency clocks to -20 for
   microsecond clocks found in some workstations.

   Root Delay: This is a 32-bit signed fixed-point number indicating the
   total roundtrip delay to the primary reference source, in seconds
   with the fraction point between bits 15 and 16.  Note that this
   variable can take on both positive and negative values, depending on
   the relative time and frequency offsets.  This field is significant
   only in server messages, where the values range from negative values
   of a few milliseconds to positive values of several hundred

      Code       External Reference Source
      LOCL       uncalibrated local clock
      CESM       calibrated Cesium clock
      RBDM       calibrated Rubidium clock
      PPS        calibrated quartz clock or other pulse-per-second
      IRIG       Inter-Range Instrumentation Group
      ACTS       NIST telephone modem service
      USNO       USNO telephone modem service
      PTB        PTB (Germany) telephone modem service
      TDF        Allouis (France) Radio 164 kHz
      DCF        Mainflingen (Germany) Radio 77.5 kHz
            MSF        Anthorn (UK) Radio 60 kHz 

EID 2480 (Verified) is as follows:

Section: 4

Original Text:

      MSF        Rugby (UK) Radio 60 kHz

Corrected Text:

      MSF        Anthorn (UK) Radio 60 kHz
The MSF transmitter was relocated from Rugby to Anthorn, in Cumbria, on 2007 March 31. See confirms this.
WWV Ft. Collins (US) Radio 2.5, 5, 10, 15, 20 MHz WWVB Boulder (US) Radio 60 kHz WWVH Kauai Hawaii (US) Radio 2.5, 5, 10, 15 MHz CHU Ottawa (Canada) Radio 3330, 7335, 14670 kHz LORC LORAN-C radionavigation system OMEG OMEGA radionavigation system GPS Global Positioning Service Figure 2. Reference Identifier Codes Root Dispersion: This is a 32-bit unsigned fixed-point number indicating the maximum error due to the clock frequency tolerance, in seconds with the fraction point between bits 15 and 16. This field is significant only in server messages, where the values range from zero to several hundred milliseconds. Reference Identifier: This is a 32-bit bitstring identifying the particular reference source. This field is significant only in server messages, where for stratum 0 (kiss-o'-death message) and 1 (primary server), the value is a four-character ASCII string, left justified and zero padded to 32 bits. For IPv4 secondary servers, the value is the 32-bit IPv4 address of the synchronization source. For IPv6 and OSI secondary servers, the value is the first 32 bits of the MD5 hash of the IPv6 or NSAP address of the synchronization source. Primary (stratum 1) servers set this field to a code identifying the external reference source according to Figure 2. If the external reference is one of those listed, the associated code should be used. Codes for sources not listed can be contrived, as appropriate. In previous NTP and SNTP secondary servers and clients, this field was often used to walk-back the synchronization subnet to the root (primary server) for management purposes. In SNTPv4 with IPv6 or OSI, this feature is not available, because the addresses are longer than 32 bits, and only a hash is available. However, a walk-back can be accomplished using the NTP control message and the reference identifier field described in RFC 1305. Reference Timestamp: This field is the time the system clock was last set or corrected, in 64-bit timestamp format. Originate Timestamp: This is the time at which the request departed the client for the server, in 64-bit timestamp format. Receive Timestamp: This is the time at which the request arrived at the server or the reply arrived at the client, in 64-bit timestamp format. Transmit Timestamp: This is the time at which the request departed the client or the reply departed the server, in 64-bit timestamp format. Authenticator (optional): When the NTP authentication scheme is implemented, the Key Identifier and Message Digest fields contain the message authentication code (MAC) information defined in Appendix C of RFC 1305. 5. SNTP Client Operations An SNTP client can operate in unicast, broadcast, or manycast modes. In unicast mode, the client sends a request (NTP mode 3) to a designated unicast server and expects a reply (NTP mode 4) from that server. In broadcast client mode, it sends no request and waits for a broadcast (NTP mode 5) from one or more broadcast servers. In manycast mode, the client sends a request (NTP mode 3) to a designated broadcast address and expects a reply (NTP mode 4) from one or more manycast servers. The client uses the first reply received to establish the particular server for subsequent unicast operations. Later replies from this server (duplicates) or any other server are ignored. Other than the selection of address in the request, the operations of manycast and unicast clients are identical. Client requests are normally sent at intervals depending on the frequency tolerance of the client clock and the required accuracy. However, under no conditions should requests be sent at less than one minute intervals. Further discussion on this point is in Section 9. A unicast or manycast client initializes the NTP message header, sends the request to the server, and strips the time of day from the Transmit Timestamp field of the reply. For this purpose, all the NTP header fields shown above are set to 0, except the Mode, VN, and optional Transmit Timestamp fields. NTP and SNTP clients set the mode field to 3 (client) for unicast and manycast requests. They set the VN field to any version number that is supported by the server, selected by configuration or discovery, and that can interoperate with all previous version NTP and SNTP servers. Servers reply with the same version as the request, so the VN field of the request also specifies the VN field of the reply. A prudent SNTP client can specify the earliest acceptable version on the expectation that any server of that or a later version will respond. NTP Version 3 (RFC 1305) and Version 2 (RFC 1119) servers accept all previous versions, including Version 1 (RFC 1059). Note that Version 0 (RFC 959) is no longer supported by current and future NTP and SNTP servers. Although setting the Transmit Timestamp field in the request to the time of day according to the client clock in NTP timestamp format is not necessary in a conforming client implementation, it is highly recommended in unicast and manycast modes. This allows a simple calculation to determine the propagation delay between the server and client and to align the system clock generally within a few tens of milliseconds relative to the server. In addition, this provides a simple method for verifying that the server reply is in fact a legitimate response to the specific client request and thereby for avoiding replays. In broadcast mode, the client has no information to calculate the propagation delay or to determine the validity of the server, unless one of the NTP authentication schemes is used. To calculate the roundtrip delay d and system clock offset t relative to the server, the client sets the Transmit Timestamp field in the request to the time of day according to the client clock in NTP timestamp format. For this purpose, the clock need not be synchronized. The server copies this field to the Originate Timestamp in the reply and sets the Receive Timestamp and Transmit Timestamp fields to the time of day according to the server clock in NTP timestamp format. When the server reply is received, the client determines a Destination Timestamp variable as the time of arrival according to its clock in NTP timestamp format. The following table summarizes the four timestamps. Timestamp Name ID When Generated ------------------------------------------------------------ Originate Timestamp T1 time request sent by client Receive Timestamp T2 time request received by server Transmit Timestamp T3 time reply sent by server Destination Timestamp T4 time reply received by client The roundtrip delay d and system clock offset t are defined as: d = (T4 - T1) - (T3 - T2) t = ((T2 - T1) + (T3 - T4)) / 2. Note that in general both delay and offset are signed quantities and can be less than zero; however, a delay less than zero is possible only in symmetric modes, which SNTP clients are forbidden to use. The following table summarizes the required SNTP client operations in unicast, manycast, and broadcast modes. The recommended error checks are shown in the Reply and Broadcast columns in the table. The message should be considered valid only if all the fields shown contain values in the respective ranges. Whether to believe the message if one or more of the fields marked "ignore" contain invalid values is at the discretion of the implementation. Field Name Unicast/Manycast Broadcast Request Reply --------------------------------------------------------------- LI 0 0-3 0-3 VN 1-4 copied from 1-4 request Mode 3 4 5 Stratum 0 0-15 0-15 Poll 0 ignore ignore Precision 0 ignore ignore Root Delay 0 ignore ignore Root Dispersion 0 ignore ignore Reference Identifier 0 ignore ignore Reference Timestamp 0 ignore ignore Originate Timestamp 0 (see text) ignore Receive Timestamp 0 (see text) ignore Transmit Timestamp (see text) nonzero nonzero Authenticator optional optional optional Although not required in a conforming SNTP client implementation, it is wise to consider a suite of sanity checks designed to avoid various kinds of abuse that might happen as the result of server implementation errors or malicious attack. Following is a list of suggested checks. 1. When the IP source and destination addresses are available for the client request, they should match the interchanged addresses in the server reply. 2. When the UDP source and destination ports are available for the client request, they should match the interchanged ports in the server reply. 3. The Originate Timestamp in the server reply should match the Transmit Timestamp used in the client request. 4. The server reply should be discarded if any of the VN, Stratum, or Transmit Timestamp fields is 0 or the Mode field is not 4 (unicast) or 5 (broadcast).
EID 2263 (Verified) is as follows:

Section: 5

Original Text:

4.  The server reply should be discarded if any of the LI, Stratum,
    or Transmit Timestamp fields is 0 or the Mode field is not 4
    (unicast) or 5 (broadcast).

Corrected Text:

4.  The server reply should be discarded if any of the VN, Stratum, 
    or Transmit Timestamp fields is 0 or the Mode field is not 4 
    (unicast) or 5 (broadcast).
Zero is a legal value for the LI field under normal conditions. Zero is not legal for VN field, however.
5. A truly paranoid client can check that the Root Delay and Root Dispersion fields are each greater than or equal to 0 and less than infinity, where infinity is currently a cozy number like one second. This check avoids using a server whose synchronization source has expired for a very long time. 6. SNTP Server Operations A SNTP server operating with either an NTP or SNTP client of the same or previous versions retains no persistent state. Because an SNTP server ordinarily does not implement the full suite of grooming and mitigation algorithms intended to support redundant servers and diverse network paths, it should be operated only in conjunction with a source of external synchronization, such as a reliable radio clock or telephone modem. In this case it operates as a primary (stratum 1) server. A SNTP server can operate with any unicast, manycast, or broadcast address or any combination of these addresses. A unicast or manycast server receives a request (NTP mode 3), modifies certain fields in the NTP header, and sends a reply (NTP mode 4), possibly using the same message buffer as the request. A manycast server listens on the designated broadcast address, but uses its own unicast IP address in the source address field of the reply. Other than the selection of address in the reply, the operations of manycast and unicast servers are identical. Broadcast messages are normally sent at intervals from 64 s to 1024 s, depending on the expected frequency tolerance of the client clocks and the required accuracy. Unicast and manycast servers copy the VN and Poll fields of the request intact to the reply and set the Stratum field to 1. Note that SNTP servers normally operate as primary (stratum 1) servers. Although operating at higher strata (up to 15) while synchronizing to an external source such as a GPS receiver is not forbidden, this is strongly discouraged. If the Mode field of the request is 3 (client), the reply is set to 4 (server). If this field is set to 1 (symmetric active), the reply is set to 2 (symmetric passive). This allows clients configured in either client (NTP mode 3) or symmetric active (NTP mode 1) to interoperate successfully, even if configured in possibly suboptimal ways. For any other value in the Mode field, the request is discarded. In broadcast (unsolicited) mode, the VN field is set to 4, the Mode field is set to 5 (broadcast), and the Poll field set to the nearest integer base-2 logarithm of the poll interval. Note that it is highly desirable that a broadcast server also supports unicast clients. This is so a potential broadcast client can calculate the propagation delay using a client/server exchange prior to switching to broadcast client (listen-only) mode. By design, a manycast server is also a unicast server. There does not seem to be a great advantage for a server to operate as both broadcast and manycast at the same time, although the protocol specification does not forbid it. A broadcast or manycast server does not send packets if not synchronized to a correctly operating reference source. It may or may not respond to a client request if it is not synchronized, but the preferred option is to respond because this allows reachability to be determined regardless of synchronization state. If the server has never synchronized to a reference source, the LI field is set to 3 (unsynchronized). Once synchronized to a reference source, the LI field is set to one of the other three values and remains at the last value set even if the reference source becomes unreachable or turns faulty. If the server is synchronized to a reference source, the Stratum field is set to 1, and the Reference Identifier field is set to the ASCII source identifier shown in Figure 2. If the server is not synchronized, the Stratum field is set to zero, and the Reference Identifier field is set to an ASCII error identifier described below. The Precision field is set to reflect the maximum reading error of the system clock. For all practical cases it is computed as the negative base-2 logarithm of the number of significant bits to the right of the decimal point in the NTP timestamp format. The Root Delay and Root Dispersion fields are set to 0 for a primary server. The timestamp fields in the server message are set as follows. If the server is unsynchronized or first coming up, all timestamp fields are set to zero, with one exception. If the message is a reply to a previously received client request, the Transmit Timestamp field of the request is copied unchanged to the Originate Timestamp field of the reply. It is important that this field be copied intact, as an NTP or SNTP client uses it to avoid bogus messages. If the server is synchronized, the Reference Timestamp is set to the time the last update was received from the reference source. The Originate Timestamp field is set as in the unsynchronized case above. The Transmit Timestamp field is set to the time of day when the message is sent. In broadcast messages the Receive Timestamp field is set to zero and copied from the Transmit Timestamp field in other messages. The following table summarizes these actions. Field Name Unicast/Manycast Broadcast Request Reply ---------------------------------------------------------------- LI ignore as needed as needed VN 1-4 copied from 4 request Mode 3 4 5 Stratum ignore 1 1 Poll ignore copied from log2 poll request interval Precision ignore -log2 server -log2 server significant significant bits bits Root Delay ignore 0 0 Root Dispersion ignore 0 0 Reference Identifier ignore source ident source ident Reference Timestamp ignore time of last time of last source update source update Originate Timestamp ignore copied from 0 transmit timestamp Receive Timestamp ignore time of day 0 Transmit Timestamp (see text) time of day time of day Authenticator optional optional optional There is some latitude on the part of most clients to forgive invalid timestamps, such as might occur when the server is first coming up or during periods when the reference source is inoperative. The most important indicator of an unhealthy server is the Stratum field, in which a value of 0 indicates an unsynchronized condition. When this value is displayed, clients should discard the server message, regardless of the contents of other fields. 7. Configuration and Management Initial setup for SNTP servers and clients can be done using a web client, if available, or a serial port, if not. Some folks hoped that in-service management of NTP and SNTPv4 servers and clients could be performed using SNMP and a suitable MIB to be published, and this has happened in some commercial SNTP servers. But, the means that have been used in the last two decades and probably will be used in the next is the NTP control and monitoring protocol defined in RFC 1305. Ordinarily, SNTP servers and clients are expected to operate with little or no site-specific configuration, other than specifying the client IP address, subnet mask, and gateway. Unicast clients must be provided with one or more designated server names or IP addresses. If more than one server is provided, one can be used for active operation and one of the others for backup should the active one fail or show an error condition. It is not normally useful to use more than one server at a time, as with millions of SNTP-enabled devices expected in the near future, such use would represent unnecessary drain on network and server resources. Broadcast servers and manycast clients must be provided with the TTL and local broadcast or multicast group address. Unicast and manycast servers and broadcast clients may be configured with a list of address-mask pairs for access control, so that only those clients or servers known to be trusted will be accepted. Multicast servers and clients must implement the IGMP protocol and be provided with the local broadcast or multicast group address as well. The configuration data for cryptographic authentication is beyond the scope of this memo. There are several scenarios that provide automatic server discovery and selection for SNTP clients with no pre-specified server configuration. For instance, a role server with CNAME such as returns a randomized list of volunteer secondary server addresses, and the client can select one or more as candidates. For an IP subnet or LAN segment including an NTP or SNTP server, SNTP clients can be configured as broadcast clients. The same approach can be used with multicast servers and clients. In both cases, provision of an access control list is a good way to ensure that only trusted sources can be used to set the system clock. In another scenario suitable for an extended network with significant network propagation delays, clients can be configured for manycast addresses, both upon initial startup and after some period when the currently selected unicast source has not been heard. Following the defined protocol, the client binds to the server from which the first reply is received and continues operation in unicast mode. 8. The Kiss-o'-Death Packet In the rambunctious Internet of today, it is imperative that some means be available to tell a client to stop making requests and to go somewhere else. A recent experience involved a large number of home/office routers all configured to use a particular university time server. Under some error conditions, a substantial fraction of these routers would send packets at intervals of one second. The resulting traffic spike was dramatic, and extreme measures were required to diagnose the problem and to bring it under control. The conclusion is that clients must respect the means available to targeted servers to stop them from sending packets. According to the NTP specification RFC 1305, if the Stratum field in the NTP header is 1, indicating a primary server, the Reference Identifier field contains an ASCII string identifying the particular reference clock type. However, in RFC 1305 nothing is said about the Reference Identifier field if the Stratum field is 0, which is called out as "unspecified". However, if the Stratum field is 0, the Reference Identifier field can be used to convey messages useful for status reporting and access control. In NTPv4 and SNTPv4, packets of this kind are called Kiss-o'-Death (KoD) packets, and the ASCII messages they convey are called kiss codes. The KoD packets got their name because an early use was to tell clients to stop sending packets that violate server access controls. In general, an SNTP client should stop sending to a particular server if that server returns a reply with a Stratum field of 0, regardless of kiss code, and an alternate server is available. If no alternate server is available, the client should retransmit using an exponential-backoff algorithm described in the next section. The kiss codes can provide useful information for an intelligent client. These codes are encoded in four-character ASCII strings left justified and zero filled. The strings are designed for character displays and log files. Usually, only a few of these codes can occur with SNTP clients, including DENY, RSTR, and RATE. Others can occur more rarely, including INIT and STEP, when the server is in some special temporary condition. Figure 3 shows a list of the kiss codes currently defined. These are for informational purposes only; the list might be modified or extended in the future. Code Meaning -------------------------------------------------------------- ACST The association belongs to a anycast server AUTH Server authentication failed AUTO Autokey sequence failed BCST The association belongs to a broadcast server CRYP Cryptographic authentication or identification failed DENY Access denied by remote server DROP Lost peer in symmetric mode RSTR Access denied due to local policy INIT The association has not yet synchronized for the first time MCST The association belongs to a manycast server NKEY No key found. Either the key was never installed or is not trusted RATE Rate exceeded. The server has temporarily denied access because the client exceeded the rate threshold RMOT Somebody is tinkering with the association from a remote host running ntpdc. Not to worry unless some rascal has stolen your keys STEP A step change in system time has occurred, but the association has not yet resynchronized Figure 3. Kiss Codes 9. On Being a Good Network Citizen SNTP and its big brother NTP have been in explosive growth over the last few years, mirroring the growth of the Internet. Just about every Internet appliance has some kind of NTP support, including Windows XP, Cisco routers, embedded controllers, and software systems of all kinds. This is the first edition of the SNTP RFC where it has become necessary to lay down rules of engagement in the form of design criteria for SNTP client implementations. This is necessary to educate software developers regarding the proper use of Internet time server resources as the Internet expands and demands on time servers increase, and to prevent the recurrence of the sort of problem mentioned above. 10. Best Practices NTP and SNTP clients can consume considerable network and server resources if they are not good network citizens. There are now consumer Internet commodity devices numbering in the millions that are potential customers of public and private NTP and SNTP servers. Recent experience strongly suggests that device designers pay particular attention to minimizing resource impacts, especially if large numbers of these devices are deployed. The most important design consideration is the interval between client requests, called the poll interval. It is extremely important that the design use the maximum poll interval consistent with acceptable accuracy. 1. A client MUST NOT under any conditions use a poll interval less than 15 seconds. 2. A client SHOULD increase the poll interval using exponential backoff as performance permits and especially if the server does not respond within a reasonable time. 3. A client SHOULD use local servers whenever available to avoid unnecessary traffic on backbone networks. 4. A client MUST allow the operator to configure the primary and/or alternate server names or addresses in addition to or in place of a firmware default IP address. 5. If a firmware default server IP address is provided, it MUST be a server operated by the manufacturer or seller of the device or another server, but only with the operator's permission. 6. A client SHOULD use the Domain Name System (DNS) to resolve the server IP addresses, so the operator can do effective load balancing among a server clique and change IP address binding to canonical names. 7. A client SHOULD re-resolve the server IP address at periodic intervals, but not at intervals less than the time-to-live field in the DNS response. 8. A client SHOULD support the NTP access-refusal mechanism so that a server kiss-o'-death reply in response to a client request causes the client to cease sending requests to that server and to switch to an alternate, if available. The following algorithm can be used as a pattern for specific implementations. It uses the following variables: Timer: This is a counter that decrements at a fixed rate. When it reaches zero, a packet is sent, and the timer is initialized with the timeout for the next packet. Maximum timeout: This is the maximum timeout determined from the given oscillator frequency tolerance and the required accuracy. Server Name: This is the DNS name of the server. There may be more than one of them, to be selected by some algorithm not considered here. Server IP Address: This is the IPv4, IPv6, or OSI address of the server. If the firmware or documentation includes specific server names, the names should be those the manufacturer or seller operates as a customer convenience or those for which specific permission has been obtained from the operator. A DNS request for a generic server name, such as, should result in a random selection of server IP addresses available for that purpose. Each time a DNS request is received, a new randomized list is returned. The client ordinarily uses the first address on the list. When candidate SNTP or NTP servers are selected, it is imperative to respect the server operator's conditions of access. Lists of public servers and their conditions of access are available at A semi-automatic server discovery scheme using DNS is described at that site. Some ISPs operate public servers, although finding them via their help desks can be difficult. A well-behaved client operates as follows (note that steps 2-4 constitute a synchronization loop): 1. Consider the specified frequency tolerance of the system clock oscillator. Define the required accuracy of the system clock, then calculate the maximum timeout. For instance, if the frequency tolerance is 200 parts per million (PPM) and the required accuracy is one minute, the maximum timeout is about 3.5 days. Use the longest maximum timeout possible given the system constraints to minimize time server aggregate load, but never make it less than 15 minutes. 2. When the client is first coming up or after reset, randomize the timeout from one to five minutes. This is to minimize shock when 3000 PCs are rebooted at the same time power is restored after a blackout. Assume at this time that the IP address is unknown and that the system clock is unsynchronized. Otherwise, use the timeout value as calculated in previous loop steps. Note that it may be necessary to refrain from implementing the aforementioned random delay for some classes of International Computer Security Association (ICSA) certification. 3. When the timer reaches zero, if the IP address is not known, send a DNS query packet; otherwise, send an NTP request packet to that address. If no reply packet has been heard since the last timeout, double the timeout, but do not make it greater than the maximum timeout. If primary and secondary time servers have been configured, alternate queries between the primary and secondary servers when no successful response has been received. 4. If a DNS reply packet is received, save the IP address and continue at step 2. If a KoD packet is received, remove that time server from the list, activate the secondary time server, and continue at step 2. If a received packet fails the sanity checks, drop that packet and also continue at step 2. If a valid NTP packet is received, update the system clock, set the timeout to the maximum, and continue at step 2. 11. Security Considerations Without cryptographic authentication, SNTPv4 service is vulnerable to disruption by misbehaving or hostile SNTP or NTP broadcast servers elsewhere in the Internet. It is strongly recommended that access controls and/or cryptographic authentication means be provided for additional security. This document includes protocol provisions for adding such security mechanisms, but it does not define the mechanisms themselves. A separate document [MIL03] in preparation will define a cryptographic security mechanism for SNTP. 12. Acknowledgements Jeff Learman was helpful in developing the OSI model for this protocol. Ajit Thyagarajan provided valuable suggestions and corrections. 13. Contributors D. Plonka J. Montgomery 14. Informative References [BRA97] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [COL94] Colella, R., Callon, R., Gardner, E., and Y. Rekhter, "Guidelines for OSI NSAP Allocation in the Internet", RFC 1629, May 1994. [DEE89] Deering, S., "Host extensions for IP multicasting", STD 5, RFC 1112, August 1989. [DEE98] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998. [DOB91] Shue, C., Haggerty, W., and K. Dobbins, "OSI connectionless transport services on top of UDP: Version 1", RFC 1240, June 1991. [FUR94] Furniss, P., "Octet Sequences for Upper-Layer OSI to Support Basic Communications Applications", RFC 1698, October 1994. [ISO86] International Standards 8602 - Information Processing Systems - OSI: Connectionless Transport Protocol Specification. International Standards Organization, December 1986. [MIL92] Mills, D., "Network Time Protocol (Version 3) Specification, Implementation and Analysis", RFC 1305, March 1992. [MIL03] Mills, D., "The Autokey Security Architecture, Protocol and Algorithms", stime/stime.pdf, August 2003. [PAR93] Partridge, C., Mendez, T., and W. Milliken, "Host Anycasting Service", RFC 1546, November 1993. [POS80] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980. [POS83] Postel, J. and K. Harrenstien, "Time Protocol", STD 26, RFC 868, May 1983. [SRI99] Srisuresh, P. and M. Holdrege, "IP Network Address Translator (NAT) Terminology and Considerations", RFC 2663, August 1999. [SRI01] Srisuresh, P. and K. Egevang, "Traditional IP Network Address Translator (Traditional NAT)", RFC 3022, January 2001. Author's Address David L. Mills Electrical and Computer Engineering Department University of Delaware Newark, DE 19716 Phone: (302) 831-8247 EMail: Full Copyright Statement Copyright (C) The Internet Society (2006). This document is subject to the rights, licenses and restrictions contained in BCP 78 and at, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at Acknowledgement Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).