Network Working Group                                   Barry M. Leiner
Request for Comments:  1015                                       RIACS
                                                              July 1987

         Implementation Plan for Interagency Research Internet


    The RFC proposes an Interagency Research Internet as the natural
    outgrowth of the current Internet.  This is an "idea paper" and
    discussion is strongly encouraged.  Distribution of this memo is


    Networking has become widespread in the scientific community, and
    even more so in the computer science community. There are networks
    being supported by a number of the Federal agencies interested in
    scientific research, and many scientists throughout the country have
    access to one or more of these networks. Furthermore, there are many
    resources (such as supercomputers) that are accessible via these

    While many of these networks are interconnected on an informal
    basis, there is currently no consistent mechanism to allow sharing
    of the networking resources. Recognizing this problem, the FCCSET
    Committee on Very High Performance Computing formed a Network
    Working Group. This group has recommended an administrative and
    management structure for interconnecting the current and planned
    agency networks supporting research.  The structure is based on the
    concept of a network of networks using standard networking

    This report elaborates on the earlier recommendation and provides an
    implementation plan. It addresses three major areas; communications
    infrastructure, user support, and ongoing research. A management and
    administrative structure is recommended for each area, and a
    budgetary estimate provided.  A phased approach for implementation
    is suggested that will quickly provide interconnection and lead to
    the full performance and functionality as the required technologies
    are developed and installed.  While this report addresses the
    interconnection of agency networks, and cooperation by certain
    federal agencies, some discussion is presented of the possible role
    that industry can play in support and use of such a network.

    Work reported herein was supported by Cooperative Agreement NCC 2-
    387 from the National Aeronautics and Space Adminstration (NASA) to

Leiner                                                          [Page 1]

RFC 1015                      IRI Plan                         July 1987

    the Universities Space Research Association (USRA). This report was
    prepared in response to a request from John Cavallini, Chairman of
    the Networking Working Group of the FCCSET Committee on Very High
    Performance Computing.


    Computer networks are critical in providing scientists access to
    computing resources (such as supercomputers) and permitting computer
    supported interaction between researchers.  Several agencies,
    recognizing this need, have established networks to provide the
    needed communications infrastructure.  The need for this
    infrastructure, though, cuts across the various agencies. To that
    end, the FCCSET Committee on Very High Performance Computing Network
    Working Group has recommended the formation of an Interagency
    Research Internet (IRI) [1].

    The purpose of this report is to suggest an implementation plan for
    such an IRI. It addresses three major areas; communications
    infrastructure, user support, and ongoing research. A management and
    administrative structure is recommended for each area, and a
    budgetary estimate provided. A phased approach for implementation is
    suggested that will quickly provide interconnection and lead to the
    full performance and functionality as the required technologies are
    developed and installed. Finally, some discussion is presented on a
    possible role for industry in supporting and using such a network.


    The prime responsibility for providing the required infrastructure
    for successful research lies with the researcher, his/her
    institution, and the agency supporting that research.  Thus, the
    individual agencies have installed and are continuing to enhance
    computer networks to allow their researchers to access advanced
    computing resources such as supercomputers as well as being able to
    communicate with each other via such facilities as electronic mail.

    However, there are a number of reasons why it is advantageous to
    interconnect the various agency networks in a coherent manner so as
    to provide a common "virtual" network supporting research.

    The need to make effective use of available networks without
    unnecessary duplication.  The agencies each support researchers in
    many parts of the country, and have installed equally widespread
    resources. Often, it is more effective for a scientist to be
    provided networking service through a different agency network than
    the one funding his research. For example, suppose several
    scientists at an institution are already being funded by NASA and

Leiner                                                          [Page 2]

RFC 1015                      IRI Plan                         July 1987

    are connected to a NASA supported network. Now a scientist at the
    same institution but supported by NSF needs access to an NSF
    supercomputer. It is much more effective to provide that
    connectivity through an interconnection of NASA and NSF networks
    than to establish another connection (to NSFnet) to the same

    The need to establish communication infrastructure to permit
    scientists to access resources without regard to which network they
    are connected but without violating access controls on either the
    networks or the resources. A scientist may be supported by multiple
    agencies, and therefore have access to resources provided by several
    agencies. It is not cost-effective to have to provide a separate
    network connection to the scientist for each of those agency

    The need for a communications infrastructure to encourage
    collaborative scientific research. One of the primary functions of a
    computer network supporting science is the encouraging of
    collaboration between researchers.  Scientific disciplines typically
    cut across many different agencies. Thus, support of this
    collaboration should be without regard to agency affiliation or
    support of the scientists involved.

    The need for a cooperative research and development program to
    evolve and enhance the IRI and its components where appropriate.
    Scientific research is highly demanding of both the computing and
    networking environment. To assure that these needs continue to be
    met, it is necessary to continually advance the state of the art in
    networking, and apply the results to the research networks.  No
    individual agency can  afford to support the required research
    alone, nor is it desirable to have inordinate duplication of

Summary of previous report

    These reasons led to the formation of the FCCSET Commitee on Very
    High Performance Computing and its Network Working Group. This group
    began in early 1985 to discuss the possibility of interconnecting
    into a common networking facility the various agency networks
    supporting scientific research. These discussions led to the report
    issued earlier this year [1] recommending such an approach.

    The report used the "Network of Networks" or Internet model of
    interconnection.  Using a standard set of protocols, the various
    networks can be connected to provide a common set of user services
    across heterogenous networks and heterogenous host computers [2,
    3,4]. This approach is discussed further in the Background section

Leiner                                                          [Page 3]

RFC 1015                      IRI Plan                         July 1987


    The report goes on to recommend an administrative and management
    structure that matches the technical approach.  Each agency would
    continue to manage and administer its individual networks. An
    interagency body would provide direction to a selected organization
    who would provide the management and operation of the
    interconnections of the networks and the common user services
    provided over the network. This selected organization would also
    provide for coordination of research activities, needed
    developments, and reflecting research community requirements into
    the national and  international standards activities.

Overview of Implementation Plan

    The general structure of the proposed IRI is analogous to a federal
    approach. Each of the agencies is responsible for operating its own
    networks and satisfying its users' requirements. The IRI provides
    the interconnecting infrastructure to permit the users on one
    network to access resources or users on other networks. The IRI also
    provides a set of standards and services which the individual
    agencies, networks, and user communities can exploit in providing
    capabilities to their individual users.  The management structure,
    likewise, provides a  mechanism by which the individual agencies can
    cooperate without interfering with the agencies' individual
    authorities or responsibilities.

    In this report, an implementation plan for the IRI is proposed.
    First, some background is given of the previous efforts to provide
    networks in support of research, and the genesis of those networks.
    A description of the suggested approach to attaining an IRI is then
    given. This description is divided into two sections; technical and
    management. The technical approach consists of two components. First
    is the provision of an underlying communications infrastructure;
    i.e. a means for providing connectivity between the various
    computers and workstations.  Second is provision of the means for
    users to make effective use of that infrastructure in support of
    their research.

    The management section elaborates on the suggestions made in the
    FCCSET committee report.  A structure is suggested that allows the
    various agencies to cooperate in the operations, maintenance,
    engineering, and research activities required for the IRI.  This
    structure also provides the necessary mechanisms for the scientific
    research community to provide input with respect to requirements and

    Finally, a phased implementation plan is presented which would allow

Leiner                                                          [Page 4]

RFC 1015                      IRI Plan                         July 1987

    the IRI to be put in place rapidly with modest funding.  A budgetary
    estimate is also provided.


    The combination of packet switched computer networks,
    internetworking to allow heterogeneous computers to communicate over
    heterogeneous networks, the widespread use of local area networks,
    and the availability of workstations and supercomputers has given
    rise to the opportunity to provide greatly improved computing
    capabilities to science and engineering. This is the major
    motivation behind the IRI.

History of Research Network

    The Defense Advanced Research Projects Agency (DARPA) developed the
    concept of packet switching beginning in the mid 1960's.  Beginning
    with the Arpanet (the world's first packet switched network) [5],a
    number of networks have been developed. These have included packet
    satellite networks [6,7], packet radio networks [8,7], and local
    area networks [9].

    Although the original motivation for the Arpanet development was
    computer resource sharing, it was apparent early on that a major use
    of such networks would be for access to computer resources and
    interaction between users [10].  Following the Arpanet development,
    a number of other networks have been developed and used to provide
    both of these functions [11]. CSNET was initiated to provide
    communications between computer science researchers [12,13].  CSNET
    was initiated by the NSF in cooperation with a number of
    universities, but is now self-sufficient.   Its subscribers include
    universities throughout the world as well as industrial members
    interested in interacting with computer scientists.

    CSNET makes use of a number of networking technologies including the
    Arpanet, public X.25 networks, and dial-up connections over phone
    lines, to support electronic mail and other networking functions. In
    addition to the basic data transport service, CSNET and Arpanet
    operate network information centers which provide help to users of
    the network as well as a number of services including a listing of
    users with their mail addresses (white pages) and a repository where
    relevant documents are stored and can be retrieved.

    With the installation of supercomputers came the desire to provide
    network access for researchers.  One of the early networks to
    provide this capability was MFEnet [11].  It was established in the
    early 1970's to provide DOE-supported users access to
    supercomputers, particularly a Cray 1 at Lawrence Livermore National

Leiner                                                          [Page 5]

RFC 1015                      IRI Plan                         July 1987

    Labs. Because MFEnet was established prior to widespread adoption of
    the TCP/IP protocol suite (to be discussed below), the MFEnet uses a
    different set of protocols. However, interfaces have been developed
    between the MFEnet and other networks, and a migration plan is
    currently under development.

    NASA Ames Research Center has long been in the forefront of using
    advanced computers to support scientific research.  The latest
    computing facility, the Numerical Aerodynamic Simulator, uses a Cray
    2 and other machines along  with a number of networking technologies
    to provide support to computational fluid dynamics researchers [14].
    This system uses the TCP/IP protocol suite both locally and remotely
    and provides easy access through advanced workstations.

    Recognizing the importance of advanced computers in carrying out
    scientific research, NSF in 1984 embarked on an ambitious program to
    provide supercomputer access to researchers. This program involved
    both the provision of supercomputers themselves (through purchase of
    computer time initially, and establishment of supercomputer centers)
    and provision of access to those supercomputers through an extensive
    networking program, NSFnet [15]. The NSFnet uses a number of
    existing networks (e.g. Arpanet, BITNET, MFEnet) and exploratory
    networks interconnected using the TCP/IP protocol suite (discussed
    below) to permit scientists widespread access to the supercomputer
    centers and each other. The NSFnet is also taking advantage of the
    widespread installation of campus and regional networks to achieve
    this connectivity in a cost effective manner.

    The above are only a small number of the current and existing
    networks being used to support research.  Quarterman [11] provides a
    good synopsis of the networks currently in operation. It is obvious
    from this that effective interconnection of the networks can provide
    cost-efficient and reliable services.

    Starting in the early 1970's, recognizing that the military had a
    need to interconnect various networks (such as packet radio for
    mobile operation with long-line networks like the Arpanet), DARPA
    initiated the development of the internet technologies [16].
    Beginning with the development of the protocols for interconnection
    and reliable transport (TCP/IP), the program  has developed methods
    for providing electronic mail, remote login, file transfer and
    similar functions between differing computers over dissimilar
    networks [4,3].  Today, using that technology, thousands of
    computers are able to communicate with each other over a "virtual
    network" of approximately 200 networks using a common set of
    protocols. The concepts developed are being used in the reference
    model and protocols of the Open Systems Interconnection model being
    developed by the International Standards Organization (ISO) [17].

Leiner                                                          [Page 6]

RFC 1015                      IRI Plan                         July 1987

    This is becoming even more important with the widespread use of
    local area networks.  As institutions install their own networks,
    and need to establish communications with computers at other sites,
    it is important to have a common set of protocols and a means for
    interconnecting the local networks to wide area networks.

Internet Model

    The DARPA Internet system uses a naming and addressing protocol,
    called the Internet Protocol (IP), to interconnect networks into a
    single virtual network. Figure 1 shows the interconnection of a
    variety of networks into the Internet system.  The naming and
    addressing structure allows any computer on any network to address
    in a uniform manner any computer on any other network. Special
    processors, called Gateways, are installed at the interfaces between
    two or more networks and provide both routing amongst the various
    networks as well as the appropriate translation from internet
    addresses to the address required for the attached networks. Thus,
    packets of data can flow between computers on the internet.

    Because of the possiblity of packet loss or errors, the Transmission
    Control Protocol (TCP) is used above the IP to provide for
    reliability and sequencing. TCP together with IP and the various
    networks and gateways then provides for reliable and ordered
    delivery of data between computers. A  variety of functions can use
    this connection to provide service to the users. A summary of the
    functions provided by the current internet system is given in [4].

    To assure interoperability between military users of the system, the
    Office of the Secretary of Defense mandated the use of the TCP/IP
    protocol suite wherever there is a need for interoperable packet
    switched communications. This led to the standardization of the
    protocols [18, 19, 20, 21, 22].

Leiner                                                          [Page 7]

RFC 1015                      IRI Plan                         July 1987

    +---+   +---+      +---+                   +---+  +---+ +---+
    | FS|   | SC|      | SC|                   | SC|  | SC| | SC|
    +-+-+   +-+-+      +-+-+                   +-+-+  +-+-+ +-+-+
      |       |          |                       |      |     |
    --+-------+-----+-----+-------+--LAN--     --+------+-+---+----LAN--
      |       |     |     |       |                       |
    +-+--+  +-+--+ +-+--+ +-+--+  |                       |
    | WS |  | WS | | WS | | WS |  |                       |
    +-+--+  +-+--+ +-+--+ +-+--+  |                       |
                               +-+-+                    +-+-+
                               | G |                    | G |
                               +-+-+                    +-+-+
                                 |                        |
                         +--------------+         +--------------+
                         |  Agency      |  +-+-+  |    Agency    |
                         |  Network     |--| G |--|    Network   |
                         +------+-------+  +---+  +------+-----+-+
                                |                        |     |
                              +-+-+                    +-+-+   |
                              | G |                    | G |   |
                              +-+-+                    +-+-+   |
                               /                        /    +-------+
                              /                        /     |  TS   |
                             /                        /      +-+-----+
                     +--------------+        +--------------+ | |...|
                     |  Regional    |        | Commercial   | T T   T
                     |   Network    |        |  Network     |
                     +-----+--------+        +------+-------+
                           |                        |
                         +-+-+                      |
                         | G |                      |
                         +-+-+                      |
                           |                      +-+-+
                           |                      | H |
                           |                      +---+
        |      |     |     |
    +-+--+ +-+--+ +-+--+ +-+--+        +-------------------------+
    | WS | | WS | | WS | | WS |        | H  - Host               |
    +-+--+ +-+--+ +-+--+ +-+--+        | WS - Workstation        |
                                       | SC - Supercomputer      |
                                       | TS - Terminal Server    |
                                       | FS - File Server        |
                                       | G  - Gateway            |

                            Figure 1: Internet System

Leiner                                                          [Page 8]

RFC 1015                      IRI Plan                         July 1987

    Thus, the TCP/IP protocol suite and associated mechanisms (e.g.
    gateways) provides a way to interconnect heterogeneous computers on
    heterogenous networks. Routing and addressing functions are taken
    care of automatically and transparently to the users.The ISO is
    currently developing a set of standards for interconnection which
    are very similar in function to the DARPA developed technologies.
    Although ISO is making great strides, and the  National Bureau of
    Standards is working with a set of manufacturers to develop and
    demonstrate these standards,  the TCP/IP protocol suite still
    represents the most available and tested technology for
    interconnection of computers and networks. It is for that reason
    that several agencies/programs, including the Department of Defense,
    NSF and NASA/NAS, have all adopted the TCP/IP suite as the most
    viable set of standards currently. As the international standards
    mature, and products supporting them appear, it can be expected that
    the various networks will switch to using those standards.


    The Internet technology described above provides the basis for
    interconnection of the various agency networks. The means to
    interconnect must satisfy a number of constraints if it is to be
    viable in a multi-agency environment.

    Each agency must retain control of its own networks. Networks have
    been established to support agency-specific missions as well as
    general computer communications within the agency and its
    contractors. To assure that these missions continue to be supported
    appropriately, as well as assure appropriate accountability for the
    network operation, the mechanism for interconnection must not
    prevent the agencies from retaining control over their individual

    This is not to say that agencies may not choose to have their
    individual networks operated by the IRI, or even turned over to the
    IRI if they determine that to be appropriate.

    Appropriate access control, privacy, and accounting mechanisms must
    be incorporated. This includes access control to data, resources,
    and the networks themselves, privacy of user data, and accounting
    mechanisms to support both cost allocation and cost auditing [23].

    The technical and adminstrative approach must allow (indeed
    encourage) the incorporation of evolving technologies. In
    particular, the network must evolve towards provision of high
    bandwidth, type of service routing, and other advanced techniques to
    allow effective use of new computing technology in a distributed
    research environment.

Leiner                                                          [Page 9]

RFC 1015                      IRI Plan                         July 1987

Communications Infrastructure

    The communications infrastructure provides connectivity between user
    machines, workstations, and centralized resources such as
    supercomputers and database machines. This roughly corresponds to
    communications services at and below the transport layer in the ISO
    OSI reference model.  There are two different types of networks. The
    first are local networks, meaning those which are internal to a
    facility, campus, etc. The second are networks which provide transit
    service between facilities. These transit networks can connect
    directly to computers, but are evolving in a direction of connecting
    local networks. The networks supported by the individual agencies
    directly are mainly in the category of transit (or long-haul)
    networks, as they typically provide nationwide connectivity, and
    usually leave communications within a facility to be dealt with by
    the facility itself. The IRI communications infrastructure thus
    deals mainly with the interconnection of transit networks.

    The internet model described above provides a simple method for
    interconnecting transit networks (as well as local networks.)  By
    using IP gateways between the agency networks, packet transport
    service can be provided between computers on any of the various
    networks. The placement of the gateways and their capacity will have
    to be determined by an initial engineering study. In addition, as
    the IRI evolves, it may be cost-effective to install one or more
    wide area networks (or designate certain existing ones) to be IRI
    transit networks, to be used by all agencies on a cost  sharing
    basis. Thus, the IRI communications infrastructure would consist of
    the interconnecting gateways plus any networks used specifically as
    transit networks. Using IP as the standard for interconnection of
    networks and global addressing provides a common virtual network
    packet transport service, upon which can be built various other
    network services such as file transfer and electronic mail.  This
    will allow sharing of the communication facilities (channels,
    satellites, etc.) between the various user/agency communities in a
    cost effective manner.

    To assure widespread interconnectivity, it is important that
    standards be adopted for use in the IRI and the various computers
    connected to it. These standards need to cover not only the packet
    transport capability but must address all the services required for
    networking in a scientific domain, including but not limited to file
    transfer, remote login, and electronic  mail.  Ultimately it is
    desirable to move towards a single set of standards for the various
    common services, and the logical choice for those standards are
    those being developed in the international commercial community
    (i.e. the ISO standards).  However, many of the scientific networks
    today use one or more of a small number of different standards; in

Leiner                                                         [Page 10]

RFC 1015                      IRI Plan                         July 1987

    particular the TCP/IP protocol suite mentioned above, the MFEnet
    protocols, and DECNET. As the international standards mature, it is
    expected that the number of communities using the same protocol
    suite will grow [5] [6].  Even today, several of the
    agencies/communities are using a common protocol suite, namely the
    TCP/IP suite. All the users connected to those computers and
    networks are able to have the full functions of an interoperable
    networking capability. And therefore the ability of the users to
    share resources and results will increase.

User Services

    In order that scientists can effectively use the network, there
    needs to be a user support organization.  To maximize the cost
    effectiveness of the overall IRI, the local user support personnel
    must be used effectively.  In particular, it is anticipated that
    direct support of users/researchers would be provided by local
    support personnel. The IRI user support organization would provide
    support to those local support personnel in areas where nationwide
    common service is cost effective.

    In particular, the this organization has several functions:  assist
    the local support personnel in the installation of facilities
    compatible with the IRI, provide references to standard facilities
    (e.g. networking interfaces, mail software) to the local support
    personnel, answer questions that local personnel are not able to
    answer, aid in the provision of specific user community services,
    e.g.  database of relevance to specific scientific domain.

Internet Research Coordination

    To evolve internet to satisfy new scientific requirements and make
    use of new technology, research is required in several areas.  These
    include high speed networking, type of service routing, new end to
    end protocols,  and congestion control.  The IRI organizational
    structure can assist in identifying areas of research where the
    various agencies have a common interest in supporting in order to
    evolve the network, and then assist in the coordination of that


    A management approach is required that will allow each agency to
    retain control of its own networking assets while sharing certain
    resources with users sponsored by other agencies.  To accomplish
    this, the following principles and constraints need to be followed.

    IRI consists of the infrastructure to connect agency networks and

Leiner                                                         [Page 11]

RFC 1015                      IRI Plan                         July 1987

    the user services required for effective use of the combined
    networks and resources.

    An organization must be identified to be responsible for the
    engineering, operation, and maintenance of both the interconnecting
    infrastructure and the user services support.

    While some agencies may choose to make use of IRI facilities and
    contractors to manage their individual agency networks, this would
    not be required and is not anticipated to be the normal situation.
    Any such arrangement would have  to be negotiated individually and
    directly between the agency and the IRI operations organization.
    Normally, the IRI organization would neither manage the individual
    agency networks nor have any jurisdiction within such networks.

    Gateways that interconnect the agency networks as well as any long-
    haul networks put in place specifically as jointly supported transit
    networks (if any such networks are required) will be managed and
    operated under the IRI organization.

    A support organization for common IRI services is required.  The
    principal clients for these services would be the local support

    The IRI structure should support the coordination of the individual
    research activities required for evolution and enhancement of the

General Management Structure

    Figure 2 shows the basic management structure for the IRI.  It is
    based on the use of a non-profit organization (call it the
    Interagency Research Internet Organization, IRIO) to manage both the
    communications infrastructure and user support. The IRIO contracts
    for the engineering, development, operations, and maintenance of
    those services with various commercial and other organizations. It
    would be responsible for providing technical and administrative
    management of the contractors providing these functions. Having the
    IRI operational management provided by an independent non-profit
    organization skilled in the area of computer networking will permit
    the flexibility required to deal with the evolving and changing
    demands of scientific networking in a cost-effective manner.

    Direction and guidance for the IRIO will be provided by a Policy
    Board consisting of representatives from the Government agencies who
    are funding the IRI. The Chairman of the Board will be selected from
    the agency representatives on a rotating basis. The Board will also
    have an Executive Director to provide administrative and other

Leiner                                                         [Page 12]

RFC 1015                      IRI Plan                         July 1987

    support. To provide effective support for the IRI Policy Board as
    well as assure appropriate coordination with the IRIO, the Executive
    Director shall be the Director of the IRIO.

    To assure that the IRI provides the best support possible to the
    scientific research community, the Policy Board will be advised by a
    Technical Advisory Board (TAB) consisting of representatives from
    the network research and engineering community, the various networks
    being interconnected with the IRI, and the scientific user
    community.  Members of the TAB will be selected by the Policy Board.
    The TAB will review the operational support of science being
    provided by the IRI and suggest directions for improvement. The TAB
    will interface directly with the IRIO to review the operational
    status and plans for the future, and recommend to the Policy Board
    any changes in priorities or directions.

    Research activities related to the use and evolution of the internet
    system will be coordinated by the Internet Research Activities Board
    (IRAB). The IRAB consists of the chairmen of the research task
    forces (see below) and has as ex-officio members technical r
    representatives from the funding agencies  and the IRIO.  The
    charter of the IRAB is to identify required directions for research
    to improve the IRI, and recommend such directions to the funding
    agencies. In addition, the IRAB will continually review ongoing
    research activities and identify how they can be exploited to
    improve the IRI.

    The Research Task Forces will each be concerned with a particular
    area/emphasis of research (e.g. end-to-end protocols, gateway
    architectures, etc.). Members will be active researchers in the
    field and the chairman an expert in the area with a broad
    understanding of research both in that area and the general internet
    (and its use for scientific research). The chairmen of the task
    forces will be selected by IRAB, and thus the IRAB will be a self-
    elected and governing organization representing the networking
    research community. The chairmen will solicit the members of the
    task force as volunteers.

Leiner                                                         [Page 13]

RFC 1015                      IRI Plan                         July 1987

+------+    +------+    +------+    +------+     ....   +------+
|DARPA |    |  NSF |    | DOE  |    | NASA |            |Others|
+--+---+    +--+---+    +--+---+    +--+---+            +--+---+
   |           |           |           |                   |
      |                         |                    +------------+
      | Funding                 | Representatives    |  Scientific|
      |                         |                    |  Research  |
      V                         V                    |  Community |
+-------------+              +-------------+         +----------+-+
|  Selecting  |     Policy   |    Policy   |                    |
|  Contracting|<-------------+    Board    |    Advice          |
|  Agency     |           +->|             |<------------+      |
+-----+-------+           |  +------+------+             |      |
      |Funding            |         |Management      +------+<--+
      |   Advice and Plans|         |                |  TAB |<-------+
      |   +---------------+         V                +------+<---- + |
      |   |                   +------------+            ^ ^        | |
      +---|------------------>|            | Interaction| |        | |
          |                   |    IRIO    |<-----------+ |        | |
          |    +------------->|            |<-----------+ |        | |
          |    | Interaction  +-----+------+ Interaction| |        | |
          |    |                    |                   V |        | |
          |    |        +-----------+----------+    +------------+ | |
          |    |        |Management |  Funding |    | Constituent| | |
          |    |        |           |          |    | Networks   | | |
          V    V        V           V          V    +------------+ | |
        +-------+    +--------+ +--------+  +-----------+          | |
        | IRAB  |    |Network | |  User  |  |   Other   |          | |
        +-------+    |  O&M   | |Services|  |Contractors|          | |
            |        +----+---+ +---+----+  +-----+-----+          | |
            |             |         |             |                | |
            |             +---------+-------------+----------------+ |
            |                                                        |
            +-----------------+--------------------+                 |
            |Chair            |Chair               |Chair            |
            V                 V                    V                 |
       +----------+        +----------+       +----------+           |
       |TASK FORCE|        |TASK FORCE|  .... |TASK FORCE|           |
       +----------+        +----------+       +----------+           |
            ^                  ^                 ^                   |
            |                  |                 |                   |
            V                  V                 V                   |
           +--------------------------------------+                  |
           |      Network Research Community      |------------------+

                   Figure 2:  IRI Management Structure

Leiner                                                         [Page 14]

RFC 1015                      IRI Plan                         July 1987


    In this section, the funding of the IRI is described. Recall that
    the IRI consists of the infrastructure to connect the agency
    networks and the services required for users to make effective use
    of such an infrastructure. These costs are divided into two
    categories; operations costs and research costs. The operations
    costs are those to operate and maintain both the communications
    infrastructure and the user services.  These costs must be shared
    between the various agencies and channeled to the IRIO to operate
    the IRI. The research costs are those used to carry out the needed
    research to evolve the IRI. These costs are handled within the
    various agency budgets and used to support research in each agency
    with coordination between the agencies.

Operations Cost

    Each participating agency will contribute a share of operations cost
    of IRI. Initially, each agency will contribute an equal share.
    Later, perhaps, the agency contributions will be adjusted according
    to a number of factors such as number of users, amount of traffic,
    type of support required (high bandwidth real time versus low
    bandwidth mail for example).

    To facilitate the funding and administration of the IRI, one agency
    will be selected to manage the contract with IRIO. All funds will
    flow through that agency to the IRIO via interagency transfer. The
    role of the selected agency would be to provide the needed
    contractual activities and adminstrative management. Technical
    guidance and monitoring of IRIO activities would be provided by the
    IRI Policy Board.

    It is not yet clear which Federal agency is best for this role.  The
    requirements for such an agency include the ability to deal flexibly
    with the evolving requirements of the IRI, to deal with funding
    flowing from the various agencies, and to deal flexibly with the
    various agency technical representatives and incorporate their
    recommendations into the contract as required. One of the first
    activities required for the Policy Board would be to select an
    appropriate funding agency.

    All operations and maintenance funding for the IRI will flow through
    the IRIO to selected contractors. This allows centralized management
    of the operation of the IRI.

    There are two major assumptions underlying the budgetary estimates
    to follow.  First of all, the IRIO should maintain a fairly low
    profile with respect to the end users (i.e. the scientists and

Leiner                                                         [Page 15]

RFC 1015                      IRI Plan                         July 1987

    researchers). That is, the users will interact directly with their
    local support personnel.  The IRIO will act as facilitator and
    coordinator, and provide facilities, information and help services
    to the local sites. This will allow the IRIO to remain relatively
    small, as it will not need to deal directly with the thousands of

    Second, it is assumed that the operations budget supports the
    interconnection of agency networks as well as transit networking
    where required, but does not include costs of the individual agency

    Appendix A provides details of the budgetary estimate. Table 1 gives
    a summary. Note that the initial year has a higher expenditure of
    capital equipment, reflecting the need to purchase both the gateways
    needed for initial interconnection and the needed facilities to
    provide the operation of the gateways and the user services.
    Operations costs are expected to grow by inflation while the capital
    costs should remain constant (decrease when inflation is considered)
    as the IRI is stabilized.

Research Costs

    In addition to the costs of operating and maintaining the
    communications infrastructure and user services, funding must be
    allocated to support an ongoing program of research to improve and
    evolve the IRI.

    While each agency funds its own research program, the intent is that
    the various programs are coordinated through the IRI Policy Board.
    Likewise,  while it is not intended that funds shall be combined or
    joint funding of projects is required, such joint activity can be
    done on an individual arrangement basis.

    Each agency agrees, as part of the joint IRI activity, to fund an
    appropriate level of networking research in areas applicable to IRI
    evolution. The total funding required is currently estimated to be
    four million dollars in FY87, growing by inflation in the outyears.
    Details of this budgetary estimate are provided in Appendix A.

Leiner                                                         [Page 16]

RFC 1015                      IRI Plan                         July 1987

              |                    Table 1                       |
              |                                                  |
              |           Annual IRI Operations Budget           |
              | Fiscal   |   Capital   |    O & M   |   Total    |
              |  Year    |    Cost     |    Cost    |            |
              |          |             |            |            |
              |          |   ($M)      |    ($M)    |   ($M)     |
              |  1987    |      2      |      8     |    10      |
              |  1988    |      1      |      9     |    10      |
              |  1989    |      1      |     10     |    11      |
              |  1990    |      1      |     11     |    12      |
              |  1991    |      1      |     12     |    13      |


    The long-term goal of the IRI activity is to put in place a
    functional high-performance network available to scientists across
    the nation. To accomplish this goal, a steady evolution of
    capability is envisioned.  This phased approach involves both
    technical and administrative aspects.

Technical Phasing

    Currently, networks are being supported by a number of agencies as
    discussed in Section 2. Many are using the DoD protocol suite
    (TCP/IP, etc.) and others have incorporated or are incorporating
    mechanisms for interoperability with networks using the DoD protocol
    suite (e.g. MFEnet). Most have discussed eventual evolution to ISO
    protocols and beyond. By and large, most of these networks are
    hooked together in some mainly ad hoc manner already, some by
    pairwise arrangement and some through third party connections (e.g.
    a university network connected to two agency networks).

    There are two major shortcomings to this ad hoc connection, though.
    Performance is not adequate for advanced scientific environments,
    such as supercomputer usage, and community wide user support is not
    generally available. The phased apprach described below will allow
    these deficiencies to be overcome through coordinated action on the
    part of the  various funding agencies.

Leiner                                                         [Page 17]

RFC 1015                      IRI Plan                         July 1987

Phase I - Functional Interoperability

    The initial stage of the IRI would provide for sharing of the
    communications facilities (e.g. channels, satellites, etc.) by
    interconnecting the networks using the Internet Protocol and IP
    gateways. In addition, mechanisms will be installed (where required)
    and maintained to allow interconnection of the common user services,
    such as electronic mail. This will allow sharing of resources
    attached to the network, such as supercomputers. [7] [8] Note:
    actual use of facilities other than mail would require arrangements
    with the various responsible parties for each host. For example, to
    login to a host not only requires network access; it also requires a
    login account on that host.

    Specific steps to be undertaken in Phase I are the following:

    Gateways will be purchased and installed where needed to
    interconnect the agency networks. The location and performance of
    these gateways will be specified by the IRIO and approved by the
    Policy Board. This engineering will take into account an estimate of
    current and future traffic requirements as well as existing
    interconnecting gateways. It may also result in a recommendation
    that some or all existing gateways between agency networks be
    replaced with common hardware so that adequate management of the
    interconnection can be achieved.

    An IRI operations and management center will be established for the
    interconnecting gateways. [9] [10] This perhaps could be done in
    conjunction with a network management center for another set of
    gateways, e.g. those supported by DARPA or NSF.

    The requirement for application gateways or other techniques to
    interconnect communities using different protocols will be
    investigated and a recommendation made by the IRIO in conjuction
    with the IRAB. The appropriate mechanisms will be installed by the
    IRIO at the direction of the Policy Board.

    An initial user services facility will be established. This facility
    will provide at a minimum such services as a white pages of users
    (similar to the current Internet "whois" service) and a means for
    making accessible standard networking software.

    The IRAB, in coordination with the Policy Board,  will draft a
    coordinated research plan for the development of the new
    technologies required for evolution of the IRI.

Leiner                                                         [Page 18]

RFC 1015                      IRI Plan                         July 1987

Phase II - Full IRI Capability

    Phase II will make the IRI fully functional with enhanced
    capabilities and performance.

    High performance gateways with appropriate new capabilities and
    functions will be installed, replacing and/or augmenting the
    gateways in place from Phase I.  The functionality and performance
    of these gateways will be specified based on the experience from
    Phase I use, the anticipated new uses of the network, and the state
    of the art technologies available as a result of the ongoing

    The basic user services facility will be mature and support network
    operation. New capabilities will be developed to support specific
    scientific communities (such as a data base of software used by a
    specific community and its availability over the network.)

    A high performance backbone network wil be installed if needed to
    connect high performance agency networks. [11] [12] This is
    anticipated because of the move in several agencies to provide high
    bandwidth networks in support of such activities as supercomputer

    The introduction and use of international standards  will be
    investigated and a plan developed for providing more services to the
    broad scientific community through use of these standards.

Administrative Phasing

    The goal of the IRI is to get to a fully cooperating and managed
    interagency research internet involving most if not all of the
    agencies supporting scientific research. Recognizing that currently,
    the major research networking players (both networking for research
    and research in networking) are DOE, NASA, DARPA, and NSF, the
    following steps are recommended:

    The first and critical step is to establish a four agency Memorandum
    of Agreement (MOA) to interconnect the agency networks and to share
    the costs of interconnection, transit networks, and an operations
    center. A management structure should be agreed upon as outlined
    above.  Agreement must also be reached on the need to fund an
    ongoing research and engineering activity to evolve the internet.

    A Policy Board and Technical Advisory Board should be established as
    quickly as possible to assure appropriate guidance and direction.

    The Policy Board shall then select an agency to handle the

Leiner                                                         [Page 19]

RFC 1015                      IRI Plan                         July 1987

    administrative and contractual actions with the IRIO.

    A non-profit organization shall then be selected by that agency
    through an appropriate procurement mechanism to be the IRIO. The
    Policy Board of the IRI shall be the selection panel.

    The initial four agencies shall transfer the agreed upon funds to
    the selected contracting agency on equal basis to start.

    These funds will then allow the contracting agency to establish a
    contract for the IRIO with the selected non-profit organization.

    The IRIO can then establish sub-contracts for engineering,
    procurement, installation, and management of gateways and operation
    of the user services center.

    To initiate the research coordination, the following steps will be

    The Internet Activities Board will evolve into the Internet Research
    Activities Board, through added membership and charter revision.

    Additional task forces will be formed as needed to reflect the
    expanded areas of research interest.

    Once the IRI is established and operating, the funding and use of
    the IRI will be reviewed to determine if equal funding is equitable.
    If not, the IRIO should be tasked to develop a recommendation for a
    practical cost allocation scheme. In addition, once the IRI has
    proved itself to be successful,  other agencies will join the IRI
    and provide additional funding.


    This report has thus far addressed the interconnection of agency
    supported networks and the use of such an internet by agency
    supported researchers. However, industry also has a need for a
    similar infrastructure to support its research activities. [13]
    [14]. Note that this refers only to industrial research activities.
    It is not envisioned, nor would it be appropriate, for the IRI to
    provide a communications system for normal industrial activities.
    Regulatory concerns make it difficult for industry to connect to a
    network that is supported by a federal agency in pursuit of the
    agency mission.

    The IRI structure above, though, may permit the connection of
    industrial research organizations.  Since the IRIO is a non-profit
    non-government organization, it would be able to accept funds from

Leiner                                                         [Page 20]

RFC 1015                      IRI Plan                         July 1987

    industry as a fair share of the costs of using the IRI. These funds
    in turn can be used to expand the networking resources so that no
    degradation of service is felt by the users suppported by the
    federal agencies. This topic would need to be discussed further by
    the Policy Board and the organization selected as the IRIO.


    The interconnection of the various agency networks supporting
    scientific research into an overall infrastructure in support of
    such research represents an exciting opportunity.  This report
    recommends an approach and a specific set of actions that can
    achieve that goal. It is hoped that, regardless of the mechanism
    used, that the Federal agencies involved recognize the importance of
    providing an appropriate national infrastructure in support of
    scientific research and take action to make such an infrastructure a


    This report was prepared with advice and comments from a large
    number of people, including the members of the FCCSET Committee
    Network Working Group and the Internet Activities Board.  Their
    input is greatly appreciated, and I hope that this report represents
    a consensus on both the need for the IRI and the proposed approach.

Leiner                                                         [Page 21]

RFC 1015                      IRI Plan                         July 1987


    This appendix provides the details for the budgetary estimates of
    Table 1.


    Gateways will be required between the various agency (and perhaps
    regional) networks. As an upper bound, assume one IRI gateway per
    state times $40K per gateway, spread out over two years, for a
    capital cost of $1M per year for first two years.

    Operation Center

    The IRI operations center will have to engineer the location and
    capacity of the gateways, as well as install, operate and maintain
    them. It also will need to coordinate support and maintenance of
    end-to-end service, helping to identify and correct problems in the
    interconnections. Costs are estimated as two people round the clock
    to man the operations center and three full time people to
    coordinate, operate, and engineer the IRI.  Using an estimate of
    $120K (including other direct costs (ODC)) per year for an operator
    and $200K per year for other activities, and translating 2 people
    round the clock into 9 people results in a total annual cost of
    $1.7M. In addition, equipment costs of roughly $500K per year can be

    Transit Networks

    It is expected that support of at least one transit network will be
    necessary. This may involve reimbursement to one of the agencies for
    use of their network, or may involve operations and maintenance of
    an IRI dedicated network. An estimate for these costs, based on
    historical data for operating the Arpanet, is $4M per year.

    User Support Organization

    To provide effective support as discussed above will require a staff
    available during working hours.  A reasonable estimate for the costs
    of such an organization is 5 people times $200K per year, or $1M per
    year (including ODC). In addition, there will be capital equipment
    costs in the first two years totalling roughly $2M.

Leiner                                                         [Page 22]

RFC 1015                      IRI Plan                         July 1987


       1.  FCCSET Committee on Very High Performance Computing Network
           Working Group, Report on Interagency Networking for Research
           Programs, February 1986.

       2.  Cerf, V.G. and P. Kirstein, "Issues in packet-network
           interconnection,"  Proceedings of the IEEE, pp. 1386-1408,
           November 1978

       3.  Cerf, V.G. and E. Cain, "The Dod intenet architecture model,
           "Computer Networks, pp. 307-318, July 1983.

       4.  Leiner, B.M., J. Postel, R. Cole, and D. Mills, "The DARPA
           internet protocol suite,"  IEEE communications Magazine
            March 1985.

       5.  Defense Advanced Research Projects Agency, A History of the
           Arpanet: The First Decade, Defense Advanced Research Projects
           Agency, April 1981.  (Defense Tech. Info. Center AD A1 15440)

       6.  Jacobs, I.M. et. al., "General purpose satellite networks,"
           Proceedings of the IEEE pp. 1448-1467, November 1978

       7.  Tobagi, F., R. Binder, and B.M. Leiner, "Packet radio and
           satellite networks," IEEE Communications Magazine, November

       8.  Kahn, R.E. et. al., "Advances in packet radio technology,"
           Proceedings of the IEEE pp. 1468-1496, November

       9.  Clark, D. et. al., "An introduction to local area
           networks,", Proceedings of the IEEE, November 1978

      10.  Lederberg, J., "Digital communications and the conduct
           of science: the new literacy," vol. 66, pp. 1314-1319,
           November 1978.

      11.  Hoskins, J.C. and J.S. Quaterman, "Notable Computer
           Networks,", pp. 932-971, October 1986.

      12.  Dennings, P.J., A.C. Hearn, and C.W. Kern, "History and
           overview of CSNET," pp. 138-145, March 1983.

      13.  Comer, D., "The computer science research network
           CSNET: A history and status report", vol. 26, pp. 747-753,
           October 1983.

Leiner                                                         [Page 23]

RFC 1015                      IRI Plan                         July 1987

      14.  Bailey, R.R. NAS: supercomputing master tool for
           aeronautics Aerospace America, pp. 118-121, January 1985

      15.  Jennings, D.M., L.H. Landweber, I.H. Fuchs, W.R. Adrion
           "Computer Networking for Scientist Science" vol. 231
           pp. 943-950, February 1986

      16.  Cerf, V.G. R.E. Kahn, "A protocol for packet network
           intercommunication, IEEE Transactions on Communications
           vol. COM-22, May 1974

      17.  Zimmerman, H. "OSI reference model - the ISO model of
           architecture for open systems intercommunications, IEEE
           Transactions on Communications vol. COM-28 pp. 425-432
           April 1980

      18.  Defense Communications Agency, MIL STD 1777: Internet
           Protocol, 1983

      19.  Defense Communications Agency, MIL STD 1778: Transmission
           Control Protocol Defense Communications Agency, 1983

      20.  Defense Communications Agency, MIL STD 1780: File Transfer
           Protocol Defense Communications Agency, 1985

      21.  Defense Communications Agency, MIL STD 1781: Simple Mail
           Transfer Protocol Defense Communications Agency, 1985

      22.  Defense Communications Agency, MIL STD 1782: Telnet
           Protocol Defense Communications Agency, 1985

      23.  Leiner, B.M. and M. Bishop, Research Institute for Advanced
           Computer Science Access Control and Privacy in Large
           Distribution Systems, RIACS TR 86.6, March 1986

Leiner                                                         [Page 24]